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The Casimir effect is an interaction between the boundaries of a finite system when fluctua-

tions in that system correlate on length scales comparable to the system size. In particular,

the critical Casimir effect is that which arises from the long-ranged thermal fluctuation of

the order parameter in a system near criticality. Recent experiments on the Casimir force

in binary liquids near critical points and 4He near the superfluid transition have redoubled

theoretical interest in the topic. It is an unfortunate fact that exact models of the experi-

mental systems are mathematically intractable in general. However, there is often insight to

be gained by studying approximations and toy models, or doing numerical computations. In

this work, we present a brief motivation and overview of the field, followed by explications

of the O(2) model with twisted boundary conditions and the O(n → ∞) model with free

boundary conditions. New results, both analytical and numerical, are presented.
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CHAPTER 1

Introduction

1.1 The Casimir Effect

In 1948, Casimir and Polder published an article[1] considering the effect of quantum elec-

trodynamics on the van der Waals force between a neutral atom and an infinite, perfectly

conducting plane. The classical result is that the interaction energy of this system goes as

L−3, with L the distance between the atom and the plane. Casimir and Polder recovered

this result for small L, but found the energy to go as L−4 at large L. They argued that the

decrease was the result of retardation effects (i.e. of the finite speed of light).

Just months later, Casimir revisited the problem on his own. He showed that, by con-

sidering the zero point energy of the quantized electromagnetic field under simple boundary

conditions, the same sort of result could be obtained with less computational difficulty. More-

over, this formulation of the problem is relevant in a far broader class of physical systems.

It is common in even the simplest quantum field theories to find an infinite ground state

energy of the form

E0 ∝
∑
n

ℏ!n

which is considered an unobservable constant that shifts the energy scale, and is therefore

discarded. However, under boundary conditions, the !n will depend on the system’s param-

eters, e.g. its size. Then, changes in those parameters can cause observable changes in the

ground state energy, which is a surprising and exciting result.

Casimir predicted just that. Suppose two infinite, perfectly conducting parallel plates

are in a vacuum, separated by a distance L. By considering the ground state energy as a
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function of L, Casimir predicted that they would attract eachother with a force per unit

area[2]
F

A
= −ℏc �2

240
⋅ 1

L4
. (1.1)

By employing a physically motivated cutoff scheme, he was able to extract this sensical,

finite result from the divergent ground state energy. We will demonstrate this calculation in

detail in section 1.2.

In 1953, Casimir proposed a model for the electron[3], with the Casimir effect holding a

ball of charge together in opposition to the Coulomb repulsion. An interesting twist came in

1968, when Boyer performed the non-trivial computation suggested by Casimir and found

that the Casimir force in this system was repulsive, i.e. contributed to expanding the ball[4].

The Casimir force is therefore, in general, something distinct from the van der Waals force

which must always be attractive (and is, besides, peculiar to the EM field). The Casimir

effect is profoundly affected by geometry and, as we will see in section 1.3, by boundary

conditions.

The most generic description of the Casimir effect is a pressure on a system caused by

the fluctuations of a quantity subjected to boundary conditions. This broad characterization

opens the door to a study of a Casimir effect in condensed matter systems, where we consider

the large thermal fluctuations of the order parameter in a confined system near a critical

point. Because the critical Casimir effect is the main topic of interest in this work, it will be

discussed in depth in a later introductory section.

In the remainder of this introductory chapter, we will continue to detail the development

of the Casimir force. Relatively simple calculations in quantum field theory will illustrate

the origin of the Casimir force and its dependence on boundary conditions. The connection

of the Casimir effect to systems with critical thermal fluctuations will be made clear, and

an overview of the results in the field will provide motivation and context to the original

work presented later in this document. Then, we will discuss the experimental verification

of Casimir forces which has seen great progress, particularly since the late 1990s.
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In chapter 2, we will consider the XY model in a three-dimensional film geometry with

“twisted” boundary conditions. The continuously tunable boundary conditions enable us to

manipulate the strength and direction of the critical Casimir force on the system.

In chapter 3, we will consider the O(n→∞) model in a three-dimensional film geometry

with free boundary conditions. This model is closely related to the spherical model, which

is famous for its elegance and mathematical simplicity. We will carefully discuss the model

and present new results, both analytic and numeric, in chapter 3.

The models and boundary conditions mentioned above will be defined in section 1.7.

1.2 Casimir’s Seminal Computation

We begin with a computation that closely follows Casimir’s impressively short and clever

original work[2] concerning the vacuum energy of the quantized electromagnetic field. Con-

sider two perfectly conducting plates in a vacuum, one at z = 0 and one at z = L. The

plates each have cross-sectional area A, large enough that we may neglect edge effects.

The Hamiltonian of the quantized electromagnetic field may be expressed as[5]

H =
∑
k,�

ℏ!(k, �)

[
1

2
+ a†(k, �)a(k, �)

]
(1.2)

with operator a†(k, �) creating a photon with momentum k and polarization � and its

conjugate a destroying that state. We have a dispersion relation

!(k, �) = !(k) = c∣k∣, (1.3)

independent of the photon’s polarization � which may take either of two values. The vacuum

energy is therefore found to be

E0 = ⟨0∣H∣0⟩ =
1

2
⋅ 2 ⋅

∑
k

ℏc∣k∣ = ℏc
∑
k

∣k∣. (1.4)

The boundary conditions at the plates quantize the component kz = n�/L, n ∈ {0, 1, 2, . . .},

while kx and ky may take any real values. We ignore the fact that kz = 0 has only one, not
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two, polarizations (it doesn’t affect the final result), and find

E0(L) = ℏc
∞∑
n=0

A

(2�)2

∫ ∞
−∞

dkx dky

√
k2
x + k2

y +
(n�
L

)2

=
ℏcA
2�

∞∑
n=0

∫ ∞
0

dr r

√
r2 +

(n�
L

)2

. (1.5)

where we now explicitly write the L dependence of the vacuum energy. Our quantity of

interest is the difference between the energy E0(L) in the present configuration, and the

energy in the absence of the plates (which is formally the same as E0(L → ∞)). One may

think of this as isolating the finite-size component of the interaction energy — subtracting

off whatever would have been in that same amount of space if the plates weren’t there. In

the limit of large L, the sum over n may be approximated as an integral, and our interaction

energy is

U = E0(L)− E0(L→∞)

=
ℏcA
2�

[
∞∑
n=0

∫ ∞
0

dr r

√
r2 +

(n�
L

)2

−
∫ ∞

0

dr dn r

√
r2 +

(n�
L

)2
]
. (1.6)

We now regulate the divergences by a factor f(u) that is 1 for u below some cutoff, but

dies off at large u so that everything converges. This is motivated by the fact that the high

frequency/short wavelength modes (such as X-rays), which will correspond to large u, are

not actually confined between the plates. They simply pass through the plates, so we expect

their (divergent) contributions to the two terms to exactly cancel. One such f(u) could be a

step function f(u < u∗) = 1, f(u > u∗) = 0, with u∗ some physically chosen cutoff. However,

we won’t find it necessary to refer to a specific regulator, we just require that f(0) = 1 and

that all derivatives of f(u) exist and vanish at u = 0. Now we insert the regulator,

U =
ℏcA
2�

[
∞∑
n=0

∫ ∞
0

dr r

√
r2 +

(n�
L

)2

f

(√
r2 +

(n�
L

)2
)

−
∫ ∞

0

dr dn r

√
r2 +

(n�
L

)2

f

(√
r2 +

(n�
L

)2
)]

(1.7)
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and apply the Euler-Maclaurin formula[6]

∞∑
n=0

g(n)−
∫ ∞

0

dn g(n) = −B1g(0)− 1

2
B2g

′(0)− 1

4!
B4g

′′′(0)− . . . , (1.8)

with Bi the Bernoulli numbers and

g(n) =

∫ ∞
0

dr r

√
r2 +

(n�
L

)2

f

(√
r2 +

(n�
L

)2
)

=
1

2

∫ ∞
(n�/L)2

du u1/2f(u1/2)

after a change of variable u = r2 + (n�/L)2. By the fundamental theorem of calculus,

g′(n) = −�
3

L3
n2f(n�/L), (1.9)

and further derivatives are simple to compute. We find that the only non-vanishing derivative

at n = 0 is g′′′(0) = −2�3/L3 so our result is

U =
ℏcA
2�

[
g(0)

2
− 1

4!
⋅ −1

30

(
−2�3

L3

)]
=

ℏcA
2�

[
g(0)

2
− �3

360L3

]
(1.10)

with g(0) independent of L. The force per unit area is then

F

A
= − 1

A

∂U

∂L
= −ℏc �

2

240
⋅ 1

L4
. (1.11)

This was Casimir’s original result: the two conducting plates attract eachother as a result

of the fluctuations in the vacuum.

1.3 An Even Simpler System Exhibiting The Casimir Effect

Although Casimir originally applied this approach to the electromagnetic field, we can quickly

see that it is a more general effect. Take the simplest quantum field theory, a real scalar

field in one dimension. We will now show that this field theory also exhibits a Casimir force

when subjected to boundary conditions.

Proceeding from first principles, suppose a set of N identical masses m are evenly spaced

along the x-axis between x = 0 and x = L, with springs of force constant k and equilib-

rium length b = L/(N − 1) between each. Let �i(t) be the displacement of mass mi from
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equilibrium. The Lagrangian of this system is

ℒ =
1

2

∑
i

(
m�̇2

i − k (�i+1 − �i)2
)

=
b

2

∑
i

(
m

b
�̇2
i − kb

(
�i+1 − �i

b

)2
)

(1.12)

where the summation runs i = 1 . . . N on the kinetic terms and i = 1 . . . N − 1 on the

potential terms. The factors of b are introduced to facilitate taking the continuum limit of

very closely spaced masses (N → ∞). In that limit, b → 0 while m/b ≈ Nm/L = � is the

mass density of the system and kb may be interpreted[7] as the Young’s modulus Y . The

quotient (�i+1 − �i)/b becomes a spatial derivative and
∑

i b →
∫
dx. Therefore, elevating

�i(t) to a continuously valued classical field �(x, t), we have

ℒ =
1

2

∫ L

0

dx

[
�

(
∂�

∂t

)2

− Y
(
∂�

∂x

)2
]

=

∫ L

0

dx ℓ(x, t), (1.13)

defining the Lagrangian density ℓ. The conjugate momentum of the field � is � = ∂ℓ/∂�̇ = ��̇,

so that the Hamiltonian is

ℋ =

∫ L

0

dx

[
�2

2�
+
Y

2

(
∂�

∂x

)2
]
. (1.14)

Before applying second quantization to the fields � and �, we will expand them in Fourier

series in order to simplify the spatial derivative:

�(x, t) = L−1/2
∑
k

�̂(k, t) eikx and �(x, t) = L−1/2
∑
k

�̂(k, t) eikx (1.15)

with k = 2�n/L, n ∈ ℤ. This quantization of k corresponds to periodic boundary conditions

(at the end of this section we will consider Dirichlet boundary conditions and find that they

lead to a different Casimir force). Making use of orthogonality, the Hamiltonian becomes

ℋ =
1

2�

∑
k

[
�̂(k, t)�̂(−k, t) + �k2Y �̂(k, t)�̂(−k, t)

]
(1.16)

which is reminiscent of a harmonic oscillator’s p2 + !2x2. Note that, taking the complex

conjugate of Eqn. (1.15), one finds that �̂(−k, t) = �̂(k, t)† and �̂(−k, t) = �̂(k, t)† in order

for the fields to be real.
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Now we canonically quantize the fields, considering � and �, and their respective Fourier

coefficients, as operators, and imposing the equal-time commutation relations

[�(x1, t), �(x2, t)] = iℏ�(x1 − x2), [�(x1, t), �(x2, t)] = 0, [�(x1, t), �(x2, t)] = 0. (1.17)

The first of these relations implies a similar result for the Fourier coefficients, namely

iℏ�(x1 − x2) =
iℏ
L

∑
k

eik(x1−x2) = [�(x1, t), �(x2, t)]

=
1

L

∑
k1,k2

eik1x1eik2x2

(
�̂(k1, t)�̂(k2, t)− �̂(k2, t)�̂(k1, t)

)
(1.18)

which forces

[�̂(k1, t), �̂(k2, t)] = iℏ�k1,−k2 . (1.19)

In the spirit of a harmonic oscillator calculation, we define ladder operators (suppressing

arguments)

a =
1√

2�∣k∣

(
∣k∣
√
�Y �̂ + i�̂

)
and a† =

1√
2�∣k∣

(
∣k∣
√
�Y �̂† − i�̂†

)
(1.20)

and compute

∑
k

∣k∣a†a = ℋ +
i

2

√
Y

�

∑
k

∣k∣
(
�̂(−k)�̂(k)− �̂(−k)�̂(k)

)
. (1.21)

If the final term is split up into two sums, and one of the sums has its index reversed, k → −k

(recall k = 2�n/L with n running over all integers), then we get the commutator [�̂†, �̂] = iℏ,

and the result is

ℋ =
∑
k

∣k∣

(
a†a+

ℏ
2

√
Y

�

)
=
∑
k

∣k∣a†a+
2�ℏc
L

∞∑
n=1

n (1.22)

where we have identified the propagation speed of waves in the medium as c =
√
Y/�.

Because the ladder operator a annihilates the normalized ground state ∣0⟩, we have ground

state energy

E0(L) = ⟨0∣ℋ∣0⟩ =
2�ℏc
L

∞∑
n=1

n. (1.23)
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We will proceed, as in the previous section, by subtracting off the ground state energy in the

case of L → ∞. Instead of using the Euler-Maclaurin formula, we will illustrate a method

of regularizing the sum. Write

E0(L, r) =
2�ℏc
L

∞∑
n=1

ne−rn = −2�ℏc
L

∂

∂r

∞∑
n=1

e−rn =
2�ℏc
4L

1

sinh2(r/2)
. (1.24)

Now expand this expression about r = 0,

E0(L, r ∼ 0) =
�ℏc
2L

[
4

r2
− 1

3
+O(r2)

]
. (1.25)

In the L → ∞ regime, we integrate over k instead of summing. Revisiting Eqn. (1.22), we

have

E0(L ∼ ∞, r) =
ℏc
2

∫ ∞
−∞

L

2�
dk ∣k∣ e−r∣k∣L/2� =

ℏcL
2�

∫ ∞
0

dk k e−rkL/2� =
2�ℏc
Lr2

(1.26)

which exactly cancels the divergence in the energy of the constrained system. Therefore the

Casimir force in this system is

F = −d (E0 − E0,L→∞)

dL
= −�ℏc

6L2
. (1.27)

The force is attractive, as before, but the L dependence is now L−2 instead of L−4 because

the dimension of the system is two smaller.

Let us now change the boundary conditions. Enforcing a Dirichlet condition �(x = 0, t) =

�(x = L, t) = 0, we find the appropriate Fourier expansion is now

�(x, t) =

(
2

L

)1/2∑
k

�̂(k, t) sin(kx) and �(x, t) =

(
2

L

)1/2∑
k

�̂(k, t) sin(kx) (1.28)

with k = n�/L and n a positive integer. The resulting Hamiltonian, from Eqn. (1.14), is

ℋ =
1

2�

∑
k

[
�̂(k)2 + �k2Y �̂(k, t)2

]
. (1.29)

The remainder of the computation goes through with few changes. In the end, we find

ℋ =
∑
k

∣k∣a†a+
�ℏc
2L

∞∑
n=1

n (1.30)
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and the Casimir force is

FDirichlet = − �ℏc
24L2

. (1.31)

This demonstrates the dependence of the Casimir force on boundary conditions. The depen-

dence can be dramatic, with one sort of boundary conditions giving rise to a much stronger

Casimir force than another. In section 1.7 we will go into more detail about the effect of

boundary conditions, and in chapter 2 we will explore a system where a continuously variable

boundary condition can tune the Casimir force in both strength and direction.

1.4 The Critical Casimir Effect

In 1978, Fisher and de Gennes studied a binary mixture near its critical “demixing” point.

We will now briefly describe the argument that they made[8]. Let the system be composed

of two fluids called A and B with mean concentrations Φ̄ and 1− Φ̄ respectively. The system

has a critical point (Φ̄c, Tc) as indicated in the rough phase diagram, fig. 1.1. For1 T > Tc,

the fluids mix perfectly into one phase, but for T < Tc, there will be, depending on Φ̄, a

separated solution (such as oil and water, for which Tc is well above room temperature), an

A-rich solution (small amount of B dissolved in a lot of A) or a B-rich solution.

If a wall is inserted into such a mixture, it will locally perturb the concentration Φ from

its mean value Φ̄ because we expect the wall to preferentially interact with one of the two

fluids. That perturbation will penetrate about a correlation length � from the wall into the

mixture. Now suppose this system is just above its critical point, fixing Φ̄ = Φc for simplicity

but taking T just larger than Tc. In that case, the correlation length would, in bulk2, diverge

as � ∼ t−� with reduced temperature t = (T − Tc)/Tc and � a universal critical exponent for

the Ising model[9].

Next, place a second wall at a distance L from the first wall. When the correlation length

gets large, on the order of L, the perturbation from each wall is felt by the other. Invoking

1This is an upper critical point. There also exist binary mixtures with lower critical points such that
demixing occurs when T > Tc.

2i.e., when the system size is taken to infinity.
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Figure 1.1: Schematic phase diagram of a binary mixture.

finite-size scaling theory, which will be discussed in section 1.5, the interaction energy (per

unit area) due to finite-size effects is shown to be

U ≈ −kBT
L2

, (1.32)

so that the plates attract eachother as a result of the confinement. This is reminiscent of the

Casimir effect. It was quickly understood that this line of reasoning could be applied to any

critical system, because it relies only on long-ranged correlations and the finite-size scaling

hypothesis.

Now, we broadly define a Casimir effect as any pressure induced by imposing boundary

conditions on a fluctuating field[10, 11]. When the fluctuations are long-ranged (comparable

to the smallest dimension of the system), there will be a Casimir force between the confining

surfaces. As discussed above, this will happen for any system near a critical point because

the order parameter has critical fluctuations on a scale � which becomes large, diverging in

the bulk/thermodynamic limit. For that reason, we often call the Casimir effect generated

by thermal fluctuations the “critical” Casimir effect. It is worth noting that Kardar and Li

showed in 1992 that thermal fluctuations of Goldstone modes can also give rise to Casimir
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forces away from critical points[12], e.g. for superfluid helium below the lambda transition.

However, the present work will be focused on Casimir effects in neighborhoods of critical

points.

1.5 Finite-Size Scaling Theory

Any real system, being composed of a finite number of particles and having a partition func-

tion given by a finite sum of exponentials, will not exhibit true thermodynamic singularities

but may instead approximate them. When the correlation length of the system is small

compared to the size of the system, the approximation is very good. Close to a critical

point, the correlation length becomes large and the finiteness of the system must be treated

carefully. The result, seen experimentally, is that the singularities are replaced by rounded

extrema at temperatures shifted from the bulk values[13].

In a bulk system, one can make the ad hoc hypothesis that the free energy and, conse-

quently, other thermodynamic functions should satisfy scaling relations of the form[14, 9]

F (�pt, �qm) = �F (t,m) (1.33)

for appropriately chosen exponents p and q, where F is the free energy (of an Ising ferro-

magnet, for illustration), t is the reduced temperature, m is the magnetization and � is an

arbitrary scaling parameter. We call the function F homogeneous if it satisfies a condition

like this one.

By taking derivatives of Eqn. (1.33), we can relate the exponents p and q to the critical

exponents �, �, �, etc. of the system. Furthermore, doing so shows that the scaling assump-

tion on F yields exact relations (as opposed to inequalities) between critical exponents[9, 15].

It is very common, finally, to set the arbitrary parameter � to a value such as t−1/p and thus

find

F (t,m) = �−1F (�pt, �qm) = t1/pF (1, t−q/pm) = t1/pW (t−q/pm), (1.34)

where we define a scaling function W (x) of the variable x = t−q/pm. Thus, the function F
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has been reduced from a function of two variables to a function of just one; this is sometimes

called “data collapse”. The scaling hypothesis has many compelling features, and it may in

fact be justified by renormalization group arguments[15], but it was entirely ad hoc at the

time it was proposed by Widom in the 1960s.

In a finite system, it is natural to make the same sort of scaling hypothesis. This was

first done by Fisher and his colleagues in the 1970s[16, 17]. The simplest case to consider

is a thin film geometry, which is particularly accessible to both experiment (see section 1.8)

and theory. Working in d dimensions, let the film have a thickness L along its axis, and a

uniform cross-sectional “area” A in its d− 1 other dimensions so its total volume is LA.

Near a critical point, when � becomes as large as L, let us consider an intensive property

P (e.g. the specific heat) of the system. Suppose that the singular part3 of P goes as

t−� in the bulk, defining some critical exponent �. In the finite system, P will not have a

singularity, but we can still talk about a “singular” part of P which will reproduce the t−�

singularity in the thermodynamic limit. The finite-size scaling hypothesis is the statement

that this singular part of P should scale as[16, 15]

Psing(L, t) ≈ L�/�X(atL1/�) (1.35)

with system-specific scaling factor a and X(x) a “finite-size scaling function”, not determined

by this analysis, which depends only on the system’s bulk universality class, spatial dimen-

sion, and the boundary conditions. This scaling form is expected to apply when T ≈ Tc, the

correlation length is comparable to L, and the dimension d is lower than the system’s upper

critical dimension dc[11]. Note that � ≈ �0t
−� so the argument of X could also be taken

to be L/� and �0, which is a system-specific correlation length scale, takes the place of the

factor a.

3For instance, we ignore the constant if P = const− t−�.
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1.6 The Casimir Force in Critical Films

We continue the analysis of the A×L film geometry described in the previous section. The

free energy ℱ of this system, in the vicinity of a bulk critical point and with A large enough

that edge effects are negligible, decomposes as[11, 18]

ℱ(T, L)

kBTcA
= Lfbulk(T ) + fs,1(T ) + fs,2(T ) + �f(T, L) (1.36)

where fbulk is the bulk free energy density, fs,i are free energies per unit area due to the

presence of each boundary of the film, and �f(T, L) is the free energy per unit area from

finite-size effects, all measured in units of kBTc. Per the comments on finiteness in section

1.5, it is customary to break each contribution into singular and non-singular parts[19]. The

singularity in the bulk term (and, generally, the surface terms as well) must be canceled by

the singular part of the finite-size term4. What remains of �f(T, L) after that cancellation

we will call the excess, �fex(T, L), and it is this quantity which is responsible for the Casimir

force.

The finite-size scaling hypothesis now states that this excess free energy density scales

as5

�fex(T, L) = L−(d−1)Θ(L/�) (1.37)

where Θ is a universal scaling function, depending only on dimensionality and the universality

classes of the bulk system and the surfaces. Some systems have strictly infinite correlation

length below Tc in which case this scaling form is meaningless for those temperatures. In

general, temperatures above and below Tc should be treated separately and will have different

scaling functions Θ±(y). The resulting Casimir force per unit area is

FCas(T, L)

kBTcA
= −∂(�fex)

∂L
= L−d#(L/�) (1.38)

with

#(y) = (d− 1)Θ(y)− yΘ′(y) (1.39)

4However, the singular part of the finite-size contribution may introduce singularities of its own, because
A→∞ is the thermodynamic limit for the (d− 1)-dimensional cross section (film layer).

5in relation to the discussion above, � = −(d− 1)�.
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also universal. This scaling behavior means that if LdFCas is plotted versus aLt� , with a a

non-universal scaling factor, then all data points should fall on the graph of #(y). This is a

particular instance of “data collapse”[11]. Finally, note that the scale of the critical Casimir

force is set by kBTc as opposed to ℏc as it was in the context of quantum fields.

While finite-size scaling is a very strong statement which aids in the study of finite-size

effects, analytic results are still hard to come by. In particular, the scaling functions are very

rarely calculable in closed form (although they may be computed numerically). There has

been considerable success, however, in analytically computing “Casimir amplitudes”, defined

as Δ = Θ(0), i.e. at t = 0, for each given bulk universality class, set of boundary conditions

and dimensionality. These amplitudes are universal quantities (in the same sense as for the

scaling functions) and often help to illustrate how the strength and direction of the Casimir

force depend on boundary conditions within a particular universality class.

1.7 Results on Critical Casimir Forces

As it will be of general import throughout this work, we now define the O(n) model. The

model consists of a lattice whose sites are occupied by n-component vector spins. The spins

participate in nearest neighbor interactions, with the Hamiltonian

H(n) = −J
∑
⟨s,s′⟩

s ⋅ s′ (1.40)

where the sum runs over nearest neighbors and the coupling J will be taken here to be positive

(ferromagnetic, i.e. spins tend to align in order to lower the energy). By the nature of the

scalar product, the Hamiltonian is invariant under a simultaneous orthogonal transformation

of all the spins in the system (i.e. its symmetry group is O(n)).

The model finds many physical applications, exhibiting varied behavior as spin dimen-

sionality n and spatial dimensionality d change[20]. The n = 1 (Ising) universality class

models uniaxial ferromagnets, vapor-liquid critical phenomena, and binary mixtures, among

other things. The n = 2 (XY ) universality class models anisotropic (“easy plane”) ferro-
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magnets and 4He superfluid[21]. The n = 3 (Heisenberg) universality class corresponds to a

classical ferromagnet. The n → ∞ case is also significant, though perhaps not physical. It

was found by Stanley in 1968 to be formally equivalent[22] to the exactly solvable Berlin-Kac

spherical model[23] which will be discussed in chapter 3.

Theoretical study of the critical Casimir effect has been primarily focused on the O(n)

model because of its relative simplicity and its application to experimentally accessible sys-

tems. Critical Casimir forces have been measured in both binary mixtures and superfluid

Helium (see section 1.8), while theoretical and numerical results abound for Ising, XY and

spherical universality classes. Within each universality class, behavior depends strongly on

boundary conditions, giving rise to several different scaling functions of interest for each n.

The boundary conditions most often studied are periodic (�(z + L) = �(z)), anti-periodic

(�(z + L) = −�(z)) and Dirichlet or “fixed” (�(z = 0) and �(z = L) specified). One also

often sees “free” boundary conditions, which set the field to zero immediately outside the

bounds of the system. Free boundary conditions are a special case of Dirichlet boundary

conditions.

Fixed boundary conditions in the Ising model amount to specifying up or down for the

spins on each surface of the system. The symbols (+,+), (+,−) = (−,+) and (−,−) are

commonly used to describe those boundary conditions for a film geometry. However, the

notation is sometimes also used in a more general way to refer to “like” or “unlike” boundary

conditions in other systems. For instance, two plates placed in a binary mixture which

both preferentially attract (or repel) the same species would be termed (+,+) boundary

conditions. If they preferred opposite species, that would be (+,−) boundary conditions.

It is generally believed[11] that symmetric boundary conditions, such as (+,+), always give

rise to attractive Casimir forces while anti-symmetric boundary conditions always give rise

to repulsion.

Scaling functions for (+,+) and (+,−) boundary conditions on the three-dimensional

Ising model were approximated by mean field theory[24] in 1997. More recently, Monte

Carlo simulation[25] showed rough, but qualitative, agreement with the mean field result
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(e.g. extrema on the correct side of Tc). The (+,+) scaling function was computed by

local functional methods in 2008, agreeing very well with the Monte Carlo results[26]. This

system is arguably the most relevant to critical Casimir experiments, and scaling functions

have recently been measured for it (see section 1.8). Lower dimensional Ising models are, of

course, more amenable to solution. There are exact results for the scaling functions of the

one- and two-dimensional Ising model[27, 28, 29] under all boundary conditions of interest.

In d ≥ 4, mean-field theory is exact for the Ising model[15] and the relevant scaling functions

have been computed[24].

There are fewer results for the XY model, almost all of them in three dimensions. The

earliest computations for the system were by Krech and Dietrich[18, 30] who in fact de-

rived a broad class of results for general symmetry order n, with periodic, anti-periodic and

Dirichlet boundary conditions, using perturbation theory. However, those results were not

applicable for T just below Tc and were thus of limited interest. Measurements on superfluid

4He films[31] around the lambda point inspired further work on the system, both purely

theoretical[32, 33, 34] as well as numerical[35, 25, 36]. Among other things, it was eventually

understood that the experimental system had to be modeled using free boundary conditions;

predictions using other boundary conditions were substantially off.

In chapter 2, we will consider the XY model in d = 3 under “twisted” Dirichlet boundary

conditions: the spins in one boundary orient in one direction while the spins in the other

boundary orient in another. These boundary conditions bridge the gap between (+,+) and

(+,−) which are no twist and 180∘ twist, respectively. We will see how the system crosses

over from the purely attractive Casimir force, in the former case, to the purely repulsive

Casimir force, in the latter case, in a continuous way.

The spherical model is of great interest because it is especially tractable. The model may

be exactly solved[37, 15] in the bulk in any dimension d, and quite a bit of computation

may be done by hand even in the finite-size case. Results have been obtained for the mean

spherical model (the spherical and mean spherical models are defined and discussed in more

detail in chapter 3) in arbitrary dimension with periodic boundary conditions[38, 39]. Study
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has also been made of the model with Dirichlet and Neumann boundary conditions in a

three-dimensional film geometry[40, 41]. In chapter 3 we will discuss a closely related model.

1.8 Experimental Verification of the Casimir Effect

With some coarse estimates of laboratory conditions, A = 1 cm2 and L = 1�m, we find

a Casimir force of ∼ 1.3 × 10−7 N from Eqn. (1.1). For perspective, the gravitational

force between two 1 g point masses a distance 1�m apart is ∼ 6.7 × 10−5 N. Although

the Casimir force is extremely weak at laboratory-accessible separations, it has nevertheless

been experimentally observed. After fifty years of incremental improvements but ultimately

unsatisfactory experiments[42, 43, 44, 45], the first experiment providing conclusive evidence

of the Casimir effect came in 1997 by Lamoreaux. That experiment[46] involved a flat plate

and a large-radius sphere (physically similar to two flat plates but far easier to arrange

parallel to eachother) with a torsion pendulum for measurement of the force, and it achieved

agreement with theory (a modified form of Eqn. (1.1)) to about ∼ 5%.

In the years following Lamoreaux’s experiment, there have been dramatic improvements

in techniques for measuring Casimir forces. In 1998, Mohideen, et al. used an atomic force

microscope to make extremely accurate measurements[47] of the Casimir force between a

plane and a sphere. In 2002, Bressi, et al. tried to directly measure the parallel-plate

Casimir force and achieved 15% agreement with theory (the experiment had previously only

been attempted by Sparnaay in 1958 but his results could only be said to “not contradict

Casimir’s theoretical prediction”[43]).

Measurement of the critical Casimir effect also faced difficulties[48]. A common experi-

mental setting is a thin film of critical fluid, which occurs naturally for fluid systems in the

wetting transition[11], where a gas is in contact with a flat substrate and partially condenses

into liquid on the subtrate. The resulting liquid has a film geometry, i.e. wide and thin.

The thickness of the film is determined by a balance of gravitational, van der Waals and

Casimir forces. It turns out that critical film thicknesses are on the order of 10−8 m and
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critical Casimir forces are on the other of 10−15 N, both prohibitively small and difficult to

measure[10]. However, owing to some clever experiments, the critical Casimir effect has been

observed very accurately in recent years.

In 1999, Garcia and Chan measured the thickness of a 4He film adsorbed between copper

substrates[31], near the critical endpoint of the �-transition6, by measuring the capacitance

of the arrangement (the Helium film and vapor act as dielectrics of variable width). They

obtained results for the Casimir force which show a big dip near Tc and a less extreme but

non-zero depression for T ≪ Tc. The system may be modeled by the three-dimensional XY

model with Dirichlet boundary conditions (order parameter vanishing at both boundaries).

The big dip, due to the critical Casimir force, has been reproduced very well in Monte Carlo

simulations[35, 25]. The low temperature depression, larger than expected from just the

presence of Goldstone modes[12], was shown in 2004 to be a Casimir force resulting from

surface fluctuations[32].

The first attempt at measuring the critical Casimir effect in a binary liquid (the original

prediction of Fisher and de Gennes) was made by Mukhopadhyay and Law[49] in 1999, using

ellipsometry on a wetting film, and gave qualitatively encouraging but inconclusive results. In

2005, Fukuto et al. performed an X-ray scattering experiment[50] on another binary mixture

film, obtaining cleaner results over a wider temperature range. The model corresponding

to these experiments is the three-dimensional Ising model with (+,−) boundary conditions,

because the experiments had one substrate preferentially attracting one component and the

second subtrate preferentially attracting the other component. The experimental data have

moderate agreement with Monte Carlo results[25] obtained two years later, showing a strictly

positive scaling function and hence a repulsive force. Another experiment by Rafai et al in

2007 found an attractive Casimir force, as expected, for a similar system with symmetric

(+,+) boundary conditions[51].

Finally, the critical Casimir effect was recently measured using colloids suspended in

a critical mixture. The method, called “total internal reflection microscopy”, gives direct

6Tc = 2.17 K, pc = 0.05 bar
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access to the net force on the colloid. The experiment performed by Hertlein et al. in 2008

shows fantastic agreement with theory for the Casimir force in a water-lutidine mixture at

temperatures beneath the lower critical demixing point[52], but the data doesn’t extend to

temperatures close to Tc. This technique promises to yield excellent experimental data in

the years to come.
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CHAPTER 2

The Casimir Force in the XY Model with Twisted

Boundary Conditions

2.1 Introduction

Recall from section 1.6 that a d-dimensional system with a temperature T and film geometry

A× L has a thermodynamic Casimir force defined by [53, 15]

F
(�)
Cas(T, L)

kBTcA
= −∂(�f

(�)
ex )

∂L
, (2.1)

where �f
(�)
ex (T, L) is the excess free energy density and the superscript � now denotes the

boundary conditions.

Accumulated evidence supports the conclusion that if the boundary conditions are iden-

tical – or sufficiently similar – at both surfaces bounding the system, then F
(�)
Cas will be

negative[30, 54, 55, 56]. For concreteness, consider a fluid in the vicinity of its liquid-vapor

critical point, which is modeled by the Ising universality class. If the fluid is confined between

identical walls, the Casimir force between those walls will be attractive for large separations.

On the other hand, if the fluid wets one of the walls while the other wall prefers the vapor

phase, then the Casimir force will be repulsive. This implies that if the boundary conditions

differ sufficiently then the Casimir force can be expected to be positive, or repulsive, for the

entire range of thermodynamic parameters.

In the intermediate case in which one of the surfaces has a weak preference for one of

the phases of the fluid while the other one exhibits a strong preference, or for a given ratio

of the surface fields and/or of surface enhancements on both surfaces, it has been recently
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demonstrated[57, 56, 58] that one can observe much richer behavior, with the Casimir force

changing its sign once, or even twice[56], as the temperature is adjusted. In addition, it

has been shown[59] via Monte Carlo simulations that, in a system with a three-dimensional

film geometry L2
∥×L and subject to periodic boundary conditions, both the magnitude and

the sign of the Casimir force depend on the aspect ratio ar = L/L∥. In this case general

arguments have been advanced to suggest that, at the bulk critical point, the Casimir force

vanishes for ar = 1 and becomes repulsive for ar > 1. These results are supported by exact

calculations for the two-dimensional Ising model.

According to the work of Lifshitz[60] and the subsequent generalizations, the force is

attractive in any system with a slab- or film-like structure in which a material B separates

two identical half-spaces A ≡ C. When B is a vacuum, this remains true even when the

half-spaces A and C are not identical. This prediction, up to now, has been verified for all

materials for which the Casimir force has been measured. Theoretical predictions exist, how-

ever, suggesting that in the latter case a repulsive Casimir force can be generated by special

selection of the material properties of A and C[61]. However, such a situation has not been

experimentally realized. The omnipresence of attractive quantum Casimir electromagnetic

forces for objects in vacuum or air affects the work of micro- and nano-machines[62, 63, 64, 65]

and can cause sticking of their working surfaces. The possibility of realizing and controlling

a repulsive critical Casimir force might be one of the ways of overcoming such a difficulty.

In an attempt to shed additional light on the influence of differing boundary conditions

on the critical Casimir force, we now consider a d-dimensional film system with ∞d−1 × L

geometry1 and consisting of local dynamical variables, such as magnetic moments, possessing

O(2) symmetry. The moments in each boundary surface are all constrained to point in the

same direction. However, the directions fixed on each surface may be different, and we denote

by � the relative angle between them. Furthermore, in the case in which the moments have

variable amplitudes, those amplitudes are fixed at a non-zero value. Alternatively, one might

think of the studied system as a lattice gas of elongated rod-like molecules embedded on a

1i.e., infinite in d− 1 dimensions and of length L in the last dimension.
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lattice.

We investigate both the equilibrium behavior of those moments (or molecules)—and the

Casimir force that arises as a result of that behavior—as a function of T and �. As we will

see, among the results of our calculation are a Casimir force that depends in a continuous way

on both the parameter � and the temperature, and that can be made attractive or repulsive.

In particular, by varying � and/or T , one can control both the sign and the magnitude of

the Casimir force in a reversible way.

We will refer to the boundary conditions described above as “twisted” boundary condi-

tions. Subject to them, the moments within the system settle into a state in which they

rotate with respect to each other as the region between the boundaries is traversed, creating

a diffuse interface within it. Finite-size scaling theory dictates that, in the vicinity of the

bulk critical point Tc,

�f (�)
ex (T, L) = L−(d−1)X(�)

ex (xt) (2.2)

where �f
(�)
ex is the excess free energy density (see section 1.5), X

(�)
ex is a universal scaling

function, xt = attL
1/� is the appropriate scaling variable, t = (T − Tc)/Tc is the reduced

temperature, and at is a non-universal scaling factor. � is the (universal) critical exponent

that characterizes the temperature divergence of the bulk two-point correlation length �

when approaching the bulk critical temperature from above. The Casimir force is

F
(�)
Cas(T, L) = L−dX

(�)
Cas (xt) . (2.3)

The scaling functions X
(�)
ex and X

(�)
Cas are universal (for the XY class, in this case), given a

particular set of boundary conditions and spatial dimensionality.

The structure of this chapter is as follows. In section 2.2, we define a lattice three-

dimensional mean-field XY model and present numerical results for the behavior of the

Casimir force within it. Section 2.3 presents analytical results for the scaling function of

the Casimir force within the Ginzburg-Landau mean-field theory of the three-dimensional

XY model. In section 2.4, we detail the numerical computations used to obtain the results

presented for the lattice and continuum models. In both section 2.2 and section 2.3, we find
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interesting behavior of the system when � = �. We study this special case in section 2.5.

We deduce the existence of an additional second-order phase transition that is specific to

this finite system. The chapter closes with a discussion presented in section 2.6. Technical

details of several derivations and computations are relegated to appendices.

2.2 The Casimir Force in the Three-Dimensional Mean-Field XY

Model on a Lattice

Consider a square lattice of dimensions∞d−1×L, with each site populated by an O(2) fixed-

length magnetic moment of magnitude m. We split up the lattice into (d − 1)-dimensional

planes labeled 0, . . . , N + 1, where L = (N + 1)a, with a being the lattice spacing taken in

the remainder to be equal to one. Neglecting the fluctuation within the planes, all moments

in plane i must take the same value (i.e. point in the same dirction), equal to their mean

value. However, due to the anisotropy along the finite dimension, the moments will vary

between planes. Let the moment in plane i be mi. We take a nearest-neighbor coupling with

strength J both in the plane and out of it, and so the energy of a moment in plane i will be

Ui = −Jmi ⋅ (2(d− 1)mi + mi−1 + mi+1) (2.4)

or, defining an effective magnetic field Hi = J(2(d − 1)mi + mi−1 + mi+1) at that site,

Ui = −mi ⋅Hi.

Approximating the moment mi as being isolated, in an external magnetic field Hi, we

can assign it the local partition function

Zi =

∫ 2�

0

d� e�mHi cos � = 2�I0(�mHi) (2.5)

with � = (kBT )−1 and � the angle between Hi and mi. On average, the component of mi

along Hi is

⟨m cos �⟩ =
1

�

d lnZ

dHi

= m
I1(�mHi)

I0(�mHi)
, (2.6)

where I0 and I1 are the modified Bessel functions of the first kind, while the component
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Figure 2.1: Renderings of the moments (d = 3, N = 30, � = �) for temperatures above

(left) and below (right) the temperature where a kink occurs in the Casimir force.

normal to Hi is

⟨m sin �⟩ =
1

Z

∫ 2�

0

d� m sin � e�mHi cos � = 0 (2.7)

so that the averaged moment is entirely along Hi. Inserting the definition of Hi in terms of

neighboring moments, we see that mi must satisfy the equation

mi = m ⋅ 2(d− 1)mi + mi−1 + mi+1

∣2(d− 1)mi + mi−1 + mi+1∣
⋅R (�mJ ∣2(d− 1)mi + mi−1 + mi+1∣) (2.8)

in the mean-field approximation (all quantities now implicitly averaged), with R(u) =

I1(u)/I0(u).

We will fix the boundary values m0 and mN+1 while mi, with i = 1, . . . , N , are free to

vary. We also define m−1 = mN+2 = 0 for notational convenience (so that H0 and HN+1

are defined). The function

f({mi}, N) =
N+1∑
i=0

[
1

2
mi ⋅Hi −

1

�
ln (I0 (�mHi))

]
(2.9)

may be regarded as the total free energy functional of the system, because minimizing with

respect to {mi} yields the self-consistency conditions (2.8) (See appendix A).

In order to compute the Casimir force on the system, we must also find the free energy

per site in the bulk, i.e. when the system is very large. In that case, the moments {mi} will

all be identical (at least near the center) and Eqn. (2.8) tells us that the equation mi,bulk =
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mR(2dm�Jmi,bulk) determines their common magnitude mi,bulk. For T > dJm2/kB, the

only solution is mi,bulk = 0 while for T < dJm2/kB, there is a non-zero solution. Thus, the

bulk system exhibits a transition at Tc,bulk = dJm2/kB between an ordered (T < Tc,bulk) and

a disordered phase.

Re-inserting the lattice spacing a, the bulk free energy density is

fb =
1

a

[
dJm2

i,bulk −
1

�
ln (I0 (2dm�Jmi,bulk))

]
(2.10)

and the Casimir force will be computed as
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Figure 2.2: The Casimir force in the lattice model (d = 3, N = 30) as a function of reduced

temperature t for various values of the twist angle, �.

FCas = − ∂

∂L
(f − Lfb) ≈ fb −

f(N + 1)− f(N)

a
. (2.11)

Until this point, the model has been somewhat general. We now restrict our attention to

the case of twisted boundary conditions and d = 3, and investigate the system numerically.
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This amounts to solving the simultaneous Eqns. (2.8) with particular values of m0 and

mN+1. Specifically, we are interested in how the behavior of the system depends on the

relative angle � between m0 and mN+1. Details of the numerical calculation are found in

section 2.4.

When the twist angle is zero, we find that the Casimir force is purely attractive (i.e,

negative), as expected for matching boundary conditions. These features are illustrated in

the plot of Casimir force versus reduced temperature (Fig. 2). As the twist is increased,

a low temperature region of repulsive Casimir force emerges. At a twist angle of �/2, the

Casimir force becomes purely repulsive. When the system nears anti-symmetric boundary

conditions, � = �, the Casimir force develops a kink at a temperature Tkink < Tc,bulk.

The nature of the kink will be discussed at greater length in a subsequent section, but

we begin to understand it from the renderings (fig. 2.1). Below the kink temperature, the

moments achieve the twist of � by rotating about the axis while maintaining almost their

full length m. Above the kink temperature, the moments all reside in a plane, and the

twist is localized to the center of the system, where the magnetization has shrunk to zero.

The nearest-neighbor interaction between moments imposes a free energy penalty for both

rotating with respect to neighbors and varying in length. The transition indicates the point

at which these penalties trade off in dominance.

2.3 The Casimir Force in the Ginzburg-Landau Mean-Field The-

ory of the Three-Dimensional XY Model

We now consider the continuous analogue of this system in the Ginzburg-Landau mean-field

theory. The order parameter of the system is the magnetization profile m(z), where z is the

finite dimension of the system. The behavior of the system is found by minimizing the free

energy functional (per unit area),

ℱ [m; t, L] =

∫ L/2

−L/2
dz

[
b

2

∣∣∣∣dmdz
∣∣∣∣2 +

1

2
at ∣m∣2 +

1

4
g ∣m∣4

]
, (2.12)
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with respect to m and subject to certain boundary conditions. This functional is the simplest

non-trivial energy (expanding in a power series in the order parameter which is small in the

vicinity of a critical point) which respects the O(n) symmetry of the system[66, 15]. The

derivative term, proportional to (m(z + �)−m(z))2, is necessary to give the ferromagnetic

interaction between layers which took the form mi ⋅mi+1 on the lattice, Eqn. (2.4). The

quantity t represents the reduced temperature while b, a and g are all positive constants,

whose microscopic nature is left unspecified.

Switching to polar coordinates,

m(z) = (Φ(z) cos'(z),Φ(z) sin'(z)) , (2.13)

the free energy functional is rewritten as

ℱ [Φ, '; t, L] =

∫ L/2

−L/2
dz

[
b

2

(
dΦ

dz

)2

+
b

2
Φ2

(
d'

dz

)2

+
1

2
atΦ2 +

1

4
gΦ4

]
. (2.14)

Minimization with respect to '(z) gives

d

dz

(
Φ2d'

dz

)
= 0 (2.15)

which leads to

Φ(z)2

(
d'

dz

)
= P' (2.16)

with an integration constant P', independent of z, which roughly indicates the degree of

twisting in the system. The condition from minimizing with respect to Φ is similarly com-

puted as

b
d2Φ

dz2
= bΦ

(
d'

dz

)2

+ atΦ + gΦ3 (2.17)

or, with the identification (2.16),

b
d2Φ

dz2
= b

P 2
'

Φ3
+ atΦ + gΦ3. (2.18)

The details of computing the functional derivatives above are laid out in appendix B. The

problem is now that of solving Eqn. (2.18) subject to twisted boundary conditions:

'(±L/2) = ±�/2,

Φ(±L/2) =∞, (2.19)
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i.e. where the moments at the boundaries are twisted by an angle � relative to one another.

The fact that we may take the order parameter to be infinite at the boundaries was argued

by Fisher and Nakanishi[67]: in the vicinity of critical phenomena, we have Φ ∼ t� and

correlation length � ∼ t−� , with the standard critical exponents � and �. This gives � ∼

Φ−�/� and therefore the effect of a large value Φ is felt in a very small local region. The critical

phenomena occurring in the bulk of the system will be unaffected by a large order parameter

at the boundary, so we are free to set it to infinity (i.e. it does not give substantially different

results from any other large value) and we do so in order to simplify some of the subsequent

mathematics.

Note that, because of reflection symmetry in Eqn. (2.18) and the boundary conditions

imposed on Φ, we have that Φ(z) = Φ(−z) and, thus, Φ′(z) = −Φ′(−z), whence Φ′(0) = 0.

From the symmetry of Eqn. (2.16) one concludes '(z) = −'(−z) which leads to '(0) = 0.

Multiplying (2.18) by dΦ/dz and integrating with respect to z, we find a first integral

PΦ = −1

2
b

[
P 2
'

Φ2
+

(
dΦ

dz

)2
]

+
1

2
a tΦ2 +

1

4
gΦ4, (2.20)

with PΦ being another integration constant independent of z. Let Φ0 ≡ Φ(z = 0) be the

amplitude of the order parameter at the center of the interval. Then, taking into account

that Φ′(0) = 0 one can conveniently express PΦ as

PΦ = −1

2
b
P 2
'

Φ2
0

+
1

2
a tΦ2

0 +
1

4
gΦ4

0, (2.21)

from which it follows that(
dΦ

dz

)2

= P 2
'

(
1

Φ2
0

− 1

Φ2

)
+ ât

(
Φ2 − Φ2

0

)
+
ĝ

2

(
Φ4 − Φ4

0

)
, (2.22)

where

â =
a

b
, ĝ =

g

b
. (2.23)
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The last result allows us to express the boundary conditions as

L

2
=

∫ L/2

0

dz =

∫ ∞
Φ0

dΦ
dz

dΦ

=

∫ ∞
Φ0

dΦ
1√

P 2
'

(
Φ−2

0 − Φ−2
)

+ ât (Φ2 − Φ2
0) + ĝ

2
(Φ4 − Φ4

0)
(2.24)

and

�

2
=

∫ L/2

0

dz
d'

dz
=

∫ ∞
Φ0

dΦ
d'

dz
⋅ dz
dΦ

= P'

∫ ∞
Φ0

dΦ

Φ2

1√
P 2
'

(
Φ−2

0 − Φ−2
)

+ ât (Φ2 − Φ2
0) + ĝ

2
(Φ4 − Φ4

0)
. (2.25)

These equations relate the integration constants, P' and Φ0, to the system’s external pa-

rameters, L and �.

The stress tensor operator for a system with the free energy functional (2.12) is [68]

Tk,l = b
∂m

∂xk

∂m

∂xl
− �k,l

{
1

2
b
[
Φ′

2
+ Φ2'′

2
]

+
1

2
atΦ2 +

1

4
gΦ4

}
− b
[
d− 2

4(d− 1)
+O

(
g3
)] [ ∂2

∂xk∂xl
− �k,l∇2

]
Φ2. (2.26)

Calculating the ⟨Tz,z⟩ component, we obtain

⟨Tz,z⟩ =
1

2
b

[(
dΦ

dz

)2

+
P 2
'

Φ2

]
− 1

2
atΦ2 − 1

4
gΦ4 (2.27)

which we expect to be a z-independent quantity equal to the pressure −∂f/∂L between

plates confining a fluctuating medium[24, 68]. In our case, we see that

⟨Tz,z⟩ ≡ −PΦ, (2.28)

by (2.20). From Eqns. (2.21) and (2.27) one observes that the Casimir force (the excess

pressure over the bulk one) in this system is

FCas(t, L) = −
[
−1

2
b
P 2
'

Φ2
0

+
1

2
a tΦ2

0 +
1

4
gΦ4

0 +
1

4g
(at)2�(−t)

]
(2.29)

where �(x) is the Heaviside step function. Here, we have taken into account that the bulk

free energy density fb for the system is fb(t < 0) = −(at)2/4g while fb(t > 0) = 0. This
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follows easily from Eqns. (2.18) and (2.14), because the spatial derivatives are vanishingly

small in the bulk. As expected, the Casimir force is sensitive to the boundary conditions,

through the quantities P' and Φ0. An alternate, more verbose, computation of the Casimir

force in this system is found in appendix B.

It is easy to show that FCas(t, L) obeys the expected scaling. Indeed, in terms of the

variables

z = L�, Φ =

√
2

ĝ
XΦL

−1, Φ0 =

√
2

ĝ
X0L

−1, P' =
2

ĝ
X'L

−3, ât = xtL
−2 (2.30)

the Casimir force reads (note that �, XΦ, X0, X' and xt are all dimensionless)

FCas(t, L) =
b

ĝ
L−4X

(�)
Cas(xt), (2.31)

where

X
(�)
Cas(xt) =

⎧⎨⎩ X2
'/X

2
0 −

(
1
2
xt +X2

0

)2
, xt ≤ 0

X2
'/X

2
0 −X2

0 (xt +X2
0 ) , xt ≥ 0

. (2.32)

Taking into account that mean-field theories for short-ranged systems are effective d = 4

theories[15], one concludes that Eqn. (2.31) is in full agreement with the expected scaling

behavior (2.3) of the Casimir force. In appendix E we will derive the low temperature

asymptotic behavior of the scaling function, finding

X
(�)
Cas(xt) ∼

1

2
�2

[
∣xt∣+ 4

√
2∣xt∣+

1

2

(
48− 3�2

)]
, (2.33)

when xt → −∞.

One can further simplify (2.32) by introducing the convenient combinations of scaling

variables

� = xt/X
2
0 , and p = X'/X

3
0 . (2.34)

Then the scaling function of the Casimir force reads

X
(�)
Cas(�) =

⎧⎨⎩ X4
0 [p2 − (1 + �)], � ≥ 0

X4
0 [p2 − (1 + �/2)2], � ≤ 0

. (2.35)
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Eqns. (2.24) and (2.25) then become

X0 =

∫ ∞
1

dx√
(x− 1)[x2 + x(1 + �) + p2]

, (2.36)

and

� = 2pX3
0

∫ 1/2

0

d�

X2
Φ(�)

. (2.37)
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Figure 2.3: A plot of the dimensionless scaling function for the Casimir force, XCas, versus xt

(also dimensionless) for several values of �. The dotted curve is the Casimir scaling function

in the Ising-like case of a critical fluid under (+,−) boundary conditions. For xt above a

certain value, this curve coincides with the one for the model studied here when twisted by

an angle � ≈ �.

In order to determine the Casimir force scaling function X
(�)
Cas(xt), all one needs to know is

the behavior of X0 = X0(xt∣�) and X'(xt∣�) = pX3
0 as functions of xt = �X2

0 at a given fixed

value of the angle �. For that, one has to solve Eqns. (2.36) and (2.37) after determining
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the function XΦ(�) from

1

2
− � =

1

2X0

∫ ∞
[XΦ(�)/X0]2

dx√
(x− 1)[x2 + x(1 + �) + p2]

(2.38)

with 0 ≤ � < 1/2, which is derived in the same way as Eqn. (2.24) but integrating from �

instead of from 0.

The analytical treatment of Eqns. (2.36)-(2.38) is performed in appendix D. The nu-

merical evaluation of the expressions derived there is described in section 2.4 and leads to

the results for the Casimir force presented in fig. 2.3. A comparison between the contin-

uum results of this section and the lattice results of the previous section show excellent

agreement – see fig. 2.4. In order to demonstrate it, we scale the lattice results (t, FCas)

to (atN
2t, aFN

4FCas), where the scaling factors at and aF are determined by forcing the

Casimir force with � = 0 and t = 0 to agree between the two models. This was done nu-

merically for N = 50, where we find at ≈ 2.977 and aF ≈ 7.480 × 10−5. fig. 2.5 shows a

comparison between the low temperature behavior of the Casimir force with the analytically

derived asymptotic behavior reported in Eqn. (2.33). We find that, for all �, the asymptotic

behavior is achieved for xt ≲ −150.

From Eqn. (2.35) one can also infer some general properties of the Casimir force. Taking

into account that, at any fixed xt and �, p is a definite function of xt and �, i.e. that

p = p(� ∣�) one can, e.g., determine the coordinates x�t,0 of the zeros for the Casimir force for

a given angle �. According to Eqn. (2.35) one has that X
(�)
Cas = 0 for p(� ∣�) =

√
1 + � , with

� ≥ 0 and for p(� ∣�) = 1 + �/2 when −2 ≤ � ≤ 0. A plot of the positions of these zeros in

the (xt, �)-plane is presented in fig. 2.6.

The figure demonstrates how, by changing, e.g., the twist angle �, we can, at a given

temperature t, make the Casimir force either repulsive or attractive. For 0 < � < �/2, this

can also be achieved by changing the temperature, i.e. the scaling variable xt, at a given

fixed value of �. We also conclude that, when � → 0, the position of the zero value of

the Casimir force approaches −∞. This implies that when � = 0, the Casimir force will

be attractive for all temperatures. Actually, for � = 0, X
(�)
Cas(xt) coincides with the known
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Figure 2.4: The scaling functions for the Casimir force in the Ginzburg-Landau model (solid

curves), overlaid with those from the lattice model with N = 50 (brown points), for several

values of � (from top to bottom: � = 0.98�, � = 2�/3, � = �/2, � = �/3, � = 0).

result for the Ising model system[24]. The behavior of X
(+,+)
Cas (x) is shown as a thick black

line in fig. 2.3. These results are briefly re-derived in appendix D for the convenience of the

reader.

When � → �/2, we observe in fig. 2.6 that x
(�)
t,0 → ∞. Thus � > �/2 implies that

the Casimir force will be repulsive for all values of xt. As � increases, the repulsive force

becomes stronger. We see from fig. 2.3 that, when � = �/2, the force is practically zero for

all temperatures above the critical temperature of the finite system, while, for � > �/2, it is

repulsive in the whole temperature region. The cases � = 2�/3 and � = 0.98� illustrate these

features in the figure. It is also seen numerically that, for xt > −10, the � = 0.98� curve
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agrees with that of the mean-field Ising model with (+,−) boundary conditions. At lower

temperatures, there is an abrupt departure from the Ising model which will be discussed

in section 2.5. The analytical expressions for the Ising model are known from [24]. For

completeness, these results are recalled in Eqn. (D.22) of appendix D.

Figure 2.5: Casimir force curves in the Ginzburg-Landau model for several values of �,

overlaid with their respective asymptotic expressions (dotted) given by Eqn. (2.33) as proven

in appendix C.

The behavior of the critical Casimir force, Δ
(�)
Cas = X

(�)
Cas(xt = 0)/3, as a function of �, is

illustrated in fig. 2.6. Note that the Casimir amplitude becomes zero at � = �/3, so that

the Casimir force for � = �/3 changes its sign at xt = 0. This was initially reported in [24]

and may also be seen in fig. 2.6. Note that, in [24], a different type of parametrization of the

amplitude and phase profiles is used – they are parametrized via the Casimir amplitudes.

This led to a restriction of the results presented to the critical temperature only. For example,

for the determination of the Casimir amplitudes in [24] one has to solve, in our notations,

the following system of equations (see Eqn. (3.16) in [24]):
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Figure 2.6: Left: The positions x
(�)
t,0 of the zeros of the Casimir force in the (xt, �)-plane.

Right: The Casimir amplitude Δ
(�)
Cas as a function of the twist angle �. This curve was

initially reported by Krech[24], and follows from the results of appendix D. The Casimir

amplitude changes sign at � = �/3.

X0 =

∫ ∞
1

dx [x3 − 1 + (x− 1)X−4
0 Δ

(�)
Cas]

−1/2 (2.39a)

and

� =

√
1 +X−4

0 Δ
(�)
Cas

∫ ∞
1

dx x−1[x3 − 1 + (x− 1)X−4
0 Δ

(�)
Cas]

−1/2. (2.39b)

2.4 Numerical Solution of the Model

Here, we will briefly describe the numerical methods used in order to obtain the Casimir

scaling functions in each of the lattice and continuum models.

2.4.1 Numerical Solution of the Lattice Model

We proceed from the results of section 2.2. The numerical problem is that of solving Eqns.

(2.8), which we reproduce here:

mi = m ⋅ 2(d− 1)mi + mi−1 + mi+1

∣2(d− 1)mi + mi−1 + mi+1∣
⋅R (�mJ ∣2(d− 1)mi + mi−1 + mi+1∣) . (2.8)
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The mean-field magnetic moments mi are each two-component vectors of length m and i

runs from 1 to N , with m0 and mN+1 fixed according to twisted boundary conditions. The

spatial dimensionality d will be taken to be three, � = 1/(kBT ) is inverse temperature and

J is the strength of the ferromagnetic interaction. R(u) = I1(u)/I0(u) with modified Bessel

functions I0 and I1.

For each i, we have two equations. Let mi = m ⋅ (xi, yi) with x2
i + y2

i = 1. Introduce the

shorthand

�i = ∣4mi + mi−1 + mi+1∣ = m

√
(4xi + xi−1 + xi+1)2 + (4yi + yi−1 + yi+1)2, (2.40)

and the combination of variables

K = �J. (2.41)

Then at each layer the two equations to be solved are

fi = �ixi − (4xi + xi−1 + xi+1)R (Km�i) = 0, (2.42a)

gi = �iyi − (4yi + yi−1 + yi+1)R (Km�i) = 0. (2.42b)

There are a total of 2N equations in 2N variables. The boundary conditions are that

m0 = m ⋅ (1, 0) and mN+1 = m ⋅ (cos�, sin�). We will employ Newton’s method to find

solutions, which will involve constructing and inverting a 2N ×2N matrix (see appendix C).

Concatenate the function components as h = (f1, . . . , fN , g1, . . . , gN), and the variables

as z = (x1, . . . , xN , y1, . . . , yN). We populate the Jacobian matrix

[Dℎ]ij =
∂ℎi
∂zj

=

⎛⎝ ∇xf ∇yf

∇xg ∇yg

⎞⎠
ij

, (2.43)

by computing partial derivatives. For instance, with 1 ≤ i = j ≤ N we have

[Dℎ]ii =
∂fi
∂xi

= �i +
4xi(4xi + xi−1 + xi+1)

�i
− 4R(Km�i)

− 4Km(4xi + xi−1 + xi+1)2R′(Km�i)

�i
. (2.44)
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Most entries in the matrix [Dℎ] are zero. Each row of the matrix has either four or six

non-zero entries, all of which look similar to the above. At a boundary, we insert the fixed

values of m0 or mN+1.

We give an initial value to the vector z which we expect to be somewhat close to the

solution, namely a uniform twist from m0 to mN+1. Therefore, we seed Newton’s method

with

xi = cos (�i/(N + 1)) and yi = sin (�i/(N + 1)) , (2.45)

where i = 1, . . . , N . At each iteration, we compute ∣h∣ and stop the algorithm when it is

sufficiently small (10−10 in our computations). We implemented the routine in Mathematica,

and it performs reasonably quickly. Inversion of the matrix [Dℎ] is sufficiently fast with

Mathematica’s built-in Inverse command.

After obtaining the solution z = (x,y) to Eqns. (2.8), it remains to compute the free

energy via Eqn. (2.9) and then the Casimir force. The discrete approximation to the

derivative, Eqn. (2.11), has us compare the free energies of a system of length N and of

length N + 1. The boundary conditions remain the same, so this measures the free energy

change associated with inserting a layer into the center of the system. Finally, we subtract

off the bulk free energy density. This is given by Eqn. (2.10) where mi,bulk is determined by

the transcendental equation

mi,bulk = mR(6mKmi,bulk), (2.46)

as detailed in section 2.2. Given values of m and K, the solution is easily found using

Mathematica’s FindRoot command.
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2.4.2 Numerical Solution of the Continuum Model

This problem amounts to solving the simultaneous equations

X0 =

∫ ∞
1

dx
1√

(x− 1)
(
x2 +

(
1 + xt

X2
0

)
x+

X2
'

X6
0

) (2.47)

� =
X'

X3
0

∫ ∞
1

dx
1

x

√
(x− 1)

(
x2 +

(
1 + xt

X2
0

)
x+

X2
'

X6
0

) (2.48)

which are the same as Eqns. (2.24) and (2.25) under a change to the scaling variables defined

in Eqn. (2.30). For the moment, we do not employ the variables � and p, defined in Eqn.

(2.34), in order to explicitly show the non-trivial dependence on the unknowns X0 and X'.

We wish to solve for those variables, supposing that the twist � and the scaled temperature

xt are given.

In appendix D, we derive two separate closed form results for the above integrals, de-

pending on the nature of the roots of the quadratic in the radical. There is good reason to

believe that the two results should be in some way connected via analytic continuation. In

fact, we find that we can take the result for complex roots and use it to correctly solve the

system in Mathematica, even when the roots are not complex. Therefore, we will limit our

attention to the closed forms (cf. Eqns. (D.15) and (D.18) in appendix D):

X0 =
2√
r
K(w) (2.49)

and

� =
p

1− r

(
X0 −

r + 1√
r
⋅ Π
[
−(r − 1)2

4r
, w

])
, (2.50)

where r and w are simple functions of p and � :

r =
√

2 + � + p2 and w2 =
1

2

(
1− 3 + �

2
√

2 + � + p2

)
, (2.51)

and we connect with the original problem through the relations p = X'/X
3
0 and � = xt/X

2
0 .

The virtue of this convoluted change of variables is that, in this set of variables, Eqns.

(2.47) and (2.48) reduce to a single equation in the variable p. Indeed, plugging the X0
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equation into the � equation, we find

� =
2p

(1− r)
√
r

(
K(w)− r + 1

2
⋅ Π
[
−(r − 1)2

4r
, w

])
≡ f(p), (2.52)

losing all explicit reference to X0. Now, if we fix � and � , the expression on the right

hand side only depends on p and may be studied graphically, numerically, and, to some

extent, analytically. In particular, in order for f(p) to be real, we must have that r > 0

and w2 < 1. The first condition yields p2 > −2 − � which is only a restriction on p when

� ≤ −2. The second condition gives 2
√

2 + � + p2 > −(3 + �), which again only restricts

p when � ≤ −3. There is also an apparent non-analyticity at r = 1, but we actually find

f(p) ≈ pK(w) +O((r − 1)) in that vicinity, so everything is well-behaved.

Plotting the function for � > −2, we see that it is perfectly well-behaved, monotonically

increasing from f(0) = 0 to f(∞) = �. Therefore for � > −2 and � < �, there will be

always be a unique solution p. In the case � ≤ −2, the function is only real-valued at

sufficiently large p, namely p > pasympt = max
(√
−2− � , 1

2
∣� + 1∣

)
, the two options given by

the conditions r > 0 and w2 < 1, respectively. There is a vertical asymptote at the cutoff,

with f(p) dropping down from a value of +∞ at that point, reaching a minimum value fmin

at some larger value of p, and then approaching the value � from below as p→∞, as in the

� > −2 case.

As � is taken further negative, the value fmin increases. For � < �, there exists a value

�min(�) with fmin = �. If � < �min, then there is no physical solution to our problem. The

case � = 0 has �min = −2 as pointed out in appendix D, while �min → −∞ for � → �.

When � > �min, though, there are two solutions, one at small p and one at large p. The

various cases are illustrated in fig. 2.7. When the solutions come as a pair, they both have

the same � value, but they do not correspond to the same temperature, because the scaled

temperature is xt = �X2
0 , and X0 is a function of p given by Eqn. (2.49). After computing

the values of p, we have the full solution of the system.

Given � < �, we now outline the computation of the Casimir profile in Mathematica.

The first thing that must be done is to find �min, the lowest physically meaningful value of
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Figure 2.7: Graphical solution of Eqn. (2.52) with � = 3�/4 and several values of � . As � is

decreased, the number of solutions changes. Thick curve (� = −1): � > −2 always has one

solution. Dashed curve (� = −2.2): �min < � < −2 has two solutions, one at p ≈ 0.5 and

the other at p ≈ 4. Dotted curve (� ≈ −2.915): � = �min has only one solution. Thin, solid

curve (� = −3.5): � < �min has no solutions.

� . �min is determined by the simultaneous conditions df/dp = 0 and fmin = �. FindRoot

can easily solve these two equations, given adequate initial values of � and p. It was found

that {p, Tan[�/2]∧2} and {�,−2.01} worked over a wide range of �.

In the range [�min,−2], each value of � yields two data points. Because FindRoot

only finds one solution at a time, we must tell it to look on each side of the minimum

of f(p). We find the location pmin of the minimum using FindMinimum and then ask

FindRoot for a solution starting at pmin+pasympt

2
and then again starting at 2pmin, where

pasympt = max
(√
−2− � , 1

2
∣� + 1∣

)
as discussed earlier. The range (−2,∞) is more straight-
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forward, and a single call to FindRoot determines p without issue.

Once p is determined for a given � , X0 is given by Eqn. (2.49). Then xt = �X2
0 and

the Casimir force is given by Eqn. (2.32), so the work is complete. It should be noted,

however, that the case � = � is exceptional, and will be discussed separately in section 2.5

and appendix F. Indeed, there is no solution p to f(p) = � when � > −2. This is because

� > −2 corresponds to xt > xt,kink and X0 = 0 identically there2. Then p = X'/X
3
0 =∞ is

clearly the wrong variable to consider. The more useful combination, M = X'/X0, remains

non-zero and finite for all xt. However, we cannot collapse the two equations into one

equation if we use M in the place of p.

2.5 The Transition at � = �

The case � = � warrants special investigation because it features behavior reminiscent of a

phase transition. As mentioned in section 2.3, the high temperature behavior of the system

at � ≈ � tracks that of the Ising model with (+,−) boundary conditions. However, we find

that a kink develops in all quantities in the system at a temperature Tkink below the bulk

critical temperature of the system, and the system changes its character at this temperature.

The lattice model also features such a kink. In section 2.2, we illustrated how the lattice

system switches from a “rotational” state below the kink temperature to a “planar” state

above it. We note that this phase transition-like behavior is peculiar to the finite system with

the given boundary conditions and is not present in the bulk. Below the kink temperature,

there are two states of equal free energy: the rotational states with rotation plus or minus

�. There is spontaneous symmetry breaking where the system orders in one of them. Above

the kink temperature, there is a single state – the “planar” one.

The system incurs free energy penalties when adjacent moments vary in length or direc-

tion. We can see how the two types of states, rotational or planar, could extremize the energy.

2We can obtain solutions in the region � ≤ −2, or equivalently xt < xt,kink, using the above method,
though.
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Figure 2.8: The dimensionless quantities X0 (solid), X'/10 (long dashing; scale reduced for

ease of plotting) and X'/X0 (short dashing) as functions of xt when � ≈ �. The vertical

dotted line indicates xt = xt,kink.

The moments in the planar state minimize rotation: they reside in a plane and shorten to

a length of zero at the center of the interval, where an abrupt reversal of direction occurs.

The moments in the rotational state minimize length variation while gradually rotating from

one end of the interval to the other. The temperature at which the kink occurs is the point

at which the two energy penalties trade off in dominance. According to this description,

the planar state is characterized by X0 = X' = 0. Indeed, this is what comes out of the

Ginzburg-Landau model above the kink temperature (see fig. 2.8). While these quantities

vanish at high temperature, their ratio X'/X0 remains non-zero at all temperatures.

In order to determine the kink temperature, we solve Eqns. (2.24) and (2.25) simul-

taneously in the vicinity of that transition point, i.e. with X0 = 0 and X'/X0 finite but
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unknown. We find numerically (see appendix F)

xt,kink ≈ −28.1099. (2.53)

Additionally, series expanding the conditions (2.24) and (2.25), we can find a first approxi-

mation to X0(xt) in the vicinity of the kink. The result is that

X0(xt) ∝ (xt,kink − xt)1/2. (2.54)

Recalling that X0 is related to the magnitude of the order parameter and xt proportional to

reduced temperature, we have determined that the critical exponent � = 1/2 for this phase

transition. This agrees with standard mean field results for, e.g. the magnetization of a

ferromagnet.

We now present another, more transparent, analysis of this transition. We claim that,

at high temperatures, the system’s only energy extremum is the planar state, while, at

low temperatures, the system has access to the planar state, as well as two energetically

equivalent rotational states with a gradual turn of either � or −�. As previously described,

the system favors the rotational state at low temperatures and ignores the planar state. Such

a situation is commonly found in Ginzburg-Landau models, where the free energy has terms

quartic and quadratic in a variable or field of interest. Depending on the coefficient of the

quadratic term, there will be one fourth-order minimum at the origin or else a maximum

at the origin and minima elsewhere. The planar state can be either an energy minimum

or an energy maximum, while the rotational states are the symmetry-breaking minima that

appear at sufficiently low temperature. By employing an approximation, we will show that

this description fits the present system.

It is useful to turn to the scaling variables (2.30), in which the free energy functional,

Eqn. (2.14), becomes

ℱ =
b

ĝ

1

L3

∫ 1/2

−1/2

d�

[(
dXΦ

d�

)2

+
X2
'

X2
Φ

+ xtX
2
Φ +X4

Φ

]
(2.55)

while the amplitude equation (2.18) reads

d2XΦ

d�2
=
X2
'

X3
Φ

+ xtXΦ + 2X3
Φ. (2.56)
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Due to the boundary conditions (2.19) the amplitude profile near the edges, XΦ(� ≈ ±1/2),

is largely temperature independent, i.e. it is almost the same above and below the transi-

tion temperature. The behavior near � = 0 must therefore account for the physics of the

transition. Near the transition temperature, we have X0 ≈ 0 and thus XΦ(�)≪ 1 for � ≈ 0.

Then Eqn. (2.56) reduces to
d2XΦ

d�2
=
X2
'

X3
Φ

(2.57)

with solution

XΦ(�) =

√
X2

0 +

(
X'

X0

)2

�2 ≡
√
X2

0 +M2�2, (2.58)

defining M ≡ X'/X0.

The free energy integral can now be computed in closed form using the asymptotic

expression (2.58). The expression for XΦ(�) is only valid up to some cutoff � = Y < 1/2,

but the free energy from the edges of the interval (∣�∣ > Y ) will not contribute to the behavior

of the system, provided that Y is large enough. The result of the integral is

ℱ ≈ 2bY

ĝL3

[
X4

0 +

(
xt +

2

3
Y 2M2

)
X2

0 +

(
1

5
Y 4M4 +

1

3
xtY

2M2 +M2

)]
(2.59)

which is quartic in X0, the (scaled) amplitude of the order parameter at the center of the

interval. In the planar state, X0 = 0, while rotational states have X0 > 0. Therefore we

expect to always see an extremum at X0 = 0, corresponding to the planar state, which will

be a free energy minimum at high temperature and a maximum at low temperature. When

the planar state is a maximum, two minima (rotational states) with ∣X0∣ > 0 should emerge.

Indeed, this behavior is clear from the form of (2.59). The position of the non-zero minimum

is found to be

X0 = ±

√
−1

2

(
xt +

2

3
Y 2M2

)
, (2.60)

which is only real for sufficiently low temperature: xt ≤ −2Y 2M2/3 < 0. The transition

occurs when equality holds. This does not fully determine the temperature of the transition

because both Y and M are functions of xt. The additional constraints are afforded by

matching the hyperbolic expression (2.58) for XΦ(�) with another expression correct near

the edge of the interval.

44



When � ≈ ±1/2, XΦ →∞ and, according to (2.56) the amplitude profile is determined

by
d2XΦ

d�2
= xtXΦ + 2X3

Φ (2.61)

which, with xt < 0, is solved by

XΦ(�) =
√
∣xt∣ csc

[√
∣xt∣
(

1

2
− ∣�∣

)]
. (2.62)

Now imposing the continuity of XΦ(�) and X ′Φ(�) from (2.58) and (2.62) at � = Y allows us

to solve for the parameters at the transition point. Proceeding numerically, we find:

xt,kink ≈ −22.4587, Mkink ≈ 19.4498,

X0,kink = 0, Ykink ≈ 0.2984. (2.63)

Compared to the exact numerical results obtained in appendix F, these values are consistent

as a first approximation, as are the behaviors of X0(xt) and M(xt). In particular, the

leading order contribution to X0(xt) goes as (xt,kink − xt)1/2, in agreement with the power

law previously found. Finally, it is easy to show that at the kink temperature the rate of

change of the phase in the middle of the system diverges. Indeed, from Eqn. (2.16) and

using the definitions (2.30) one obtains[
XΦ(�)

X0

]2
d'(�)

d�
=
X'

X2
0

=
M

X0

. (2.64)

Thus, in the limit � → 0 one derives at xt = xt,kink that (d'(�)/d�)∣�=0 = M/X0 →∞, since

X0,kink = 0. Therefore, at the kink temperature all the change in the phase of the moments

happens at the middle of the system, where their length becomes zero. The phase of the

moments jumps there from 0 to �.

2.6 Discussion and Concluding Remarks

We have studied the O(2) model in a three-dimensional film geometry, and find identical

predictions from lattice and continuum mean-field theories. Consistent with systems of
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similar type, the Casimir force with symmetric boundary conditions (� = 0) is attractive,

while the Casimir force with anti-symmetric boundary conditions (� = �) is repulsive. In

particular, the critical Casimir force, i.e. FCas at the bulk transition temperature, changes

from repulsive to attractive. This is a standard result, but we also find intermediate scenarios

when 0 < � < � which feature critical Casimir forces, and scaling functions for the Casimir

force (illustrated in fig. 2.2), different from those of the symmetric and anti-symmetric

cases. The Casimir force may therefore be continuously adjusted at constant temperature

by varying the twist �, or at constant twist by varying the temperature.

Additionally we find that, when the boundary conditions are perfectly anti-symmetric

(� = �), the system undergoes a phase transition at a temperature below the bulk critical

temperature. We are able to understand this transition as a symmetry-breaking effect: at

high temperatures the moments of the system are confined to a plane, while at low tempera-

tures they rotate about the z-axis by either � or −� to satisfy the boundary conditions. The

high temperature behavior tracks that of an Ising model whose order parameter is always

simply up or down, but our system departs from that behavior at the transition point, once

moments find it energetically favorable to rotate out of a plane.
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CHAPTER 3

The Casimir Force in the O(n) Model with n→∞

3.1 Introduction

On the heels of Onsager’s 1944 solution of the two-dimensional Ising model[69], it was hoped

that some clever approach could dispatch the Ising model in three dimensions as Onsager

had shown it possible in two. In 1947, looking for a simpler system that might shed light

on the Ising problem, Kac1 came up with the “Gaussian” model where each spin variable is

a Gaussian random variable of width 1, rather than being restricted to the values ±1. The

Ising model has a partition function

ZIsing =
∑
s1=±1

⋅ ⋅ ⋅
∑
sN=±1

exp

⎡⎣�J ∑
⟨si,sj⟩

sisj

⎤⎦ , (3.1)

with J > 0 the ferromagnetic coupling, � the inverse temperature and
∑
⟨x,y⟩ indicating a

sum over nearest neighbors. In contrast, the Gaussian model has

ZGaussian =

∫ ∞
−∞

ds1 ⋅ ⋅ ⋅ dsN exp

[
−1

2

∑
i

s2
i

]
exp

⎡⎣�J ∑
⟨si,sj⟩

sisj

⎤⎦ , (3.2)

which can be integrated in closed form after taking a Fourier transform. In section 3.2, a

similar calculation will be performed.

There is a striking similarity between the functional form of the results from the Gaussian

and Ising models. For example, the thermodynamic limit of the Gaussian model in two

1Kac gives a first-hand description of the events leading up to his invention of the spherical model as part
of an interesting article in memoriam of T. Berlin[70].

47



dimensions has a free energy per site

1

2�
⋅ 1

(2�)2

∫ 2�

0

d!1 d!2 ln [1− 2�J (cos!1 + cos!2)] , (3.3)

while the Ising model has

− 1

2�
⋅ 1

(2�)2

∫ 2�

0

d!1 d!2 ln
[
cosh2(2�J)− sinh(2�J) (cos!1 + cos!2)

]
, (3.4)

and the two agree very well at high temperatures except for the negative sign[23]. However,

we see that the Gaussian model is unphysical because, when 2�J > 1
2
, the free energy

becomes complex. Thus, there is a positive temperature below which the model is entirely

broken. This may be traced back to the quadratic form in the partition function developing

a negative eigenvalue, and it happens in any spatial dimension.

After some time, Kac hit upon the “spherical” constraint, which avoids the low-temperature

breakdown while retaining some of the simplicity of the Gaussian model’s mathematics. The

Ising model with N spins has 2N possible configurations {±1, . . . ,±1}, and these configura-

tions may be visualized as the vertices of a cube in N dimensions. The spherical constraint

puts the spins on a sphere in N dimensions, instead:

s2
1 + . . .+ s2

N = N. (3.5)

The partition function for the spherical model is therefore

ZSM =

∫ ∞
−∞

ds1 ⋅ ⋅ ⋅ dsN exp

⎡⎣�J ∑
⟨si,sj⟩

sisj

⎤⎦ �( N∑
i=1

s2
i −N

)
. (3.6)

Kac solved the model in one, two and three dimensions with help from T. Berlin[23]. Montroll

also arrived at the same results independently[71]. They found that the spherical model

undergoes a phase transition in three dimensions (and, it turns out, in higher dimensions[37])

but not in one or two. The Ising model, of course, exhibits phase transitions in dimensions

two and higher. Nonetheless, as an exactly solvable model in three dimensions with a phase

transition, the spherical model was a sensational discovery.

About two decades later, Stanley showed that there is a formal correspondence between

the spherical model and the O(n) model in the n → ∞ limit[22] if translational invariance
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is assumed (i.e. an infinite lattice or periodic boundary conditions). So, while the spherical

model was invented as an approximation to the O(1) model, it was eventually understood to

be, in some sense, the O(n → ∞) model. It is worthwhile to note that the spherical model

also maps onto the ideal Bose gas in the neighborhood of their transitions[72].

Shortly after Kac and Berlin published their initial paper on the spherical model, Lewis

and Wannier showed that the same thermodynamic results followed if the spherical constraint

is simply enforced in the mean[73, 74],〈
N∑
i=1

s2
i

〉
= N, (3.7)

while the partition function is modified to

ZMSM =

∫ ∞
−∞

ds1 ⋅ ⋅ ⋅ dsN exp

⎡⎣�J ∑
⟨si,sj⟩

sisj − �Λ
N∑
i=1

s2
i

⎤⎦ . (3.8)

The condition (3.7), given by −∂ lnZMSM/∂Λ = N , replaces the computationally challenging

constraint on the integration domain, and we call the resulting model the “mean” spherical

model.

The relationship between the spherical model and the mean spherical model is analogous

to that between a canonical ensemble and its grand canonical ensemble. In that case, a

restricted sum over states with fixed particle count N is replaced by an unrestricted sum

over states but the Boltzmann factor is multiplied by exp(−��N) which makes it a sharply

peaked function of N if the chemical potential � is chosen appropriately[66]. In the analogy

to the spherical model, the particle count corresponds to
∑

i s
2
i and the chemical potential

to the Lagrange multiplier Λ which we call the “spherical field”. Thus, the spherical and

mean spherical models describe the same system in two different ensembles. Because the

ensembles are equivalent in the thermodynamic limit[66], it is not surprising that the two

models give the same results[73, 75].

As in earlier chapters, we are interested in finite-size effects, and the natural geometry

to consider is that of a thin film. Such a geometry is not translationally invariant along

its finite dimension, and therefore the Stanley correspondence (between O(n → ∞) and
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spherical models) breaks down. The appropriate generalization was shown to be one in

which each transverse layer of the film satisfies its own independent spherical (or mean

spherical) constraint[76]. In other words, if we are interested in the film-geometry behavior

of the O(n) model with n → ∞, then we may equally well study this per-layer spherical

model. One may also study the film-geometry behavior of the standard spherical model, with

only one sum constraint for the entire system. However, these two systems are in general

not equivalent.

The latter problem, a spherical model in film geometry with one system-wide constraint,

has been worked out. In three dimensions, with periodic boundary conditions, closed form

results for the scaling functions of the excess free energy and Casimir force were obtained by

Danchev[77]. More recently, Kastening and Dohm studied the system under several other

types of boundary conditions (which, unlike periodic boundary conditions, break transla-

tional invariance). Their results indicated violations of finite-size scaling[78] which may

point to this system being unphysical.

We will now study the Casimir force in a three-dimensional O(n → ∞) model with

film geometry. We will model it using the per-layer mean spherical constraints mentioned

above. An equivalent system was independently analyzed, very recently, by Diehl et al.[41]

using different methods than will be presented here. The results of that analysis appear

to be restricted to a limited range of temperatures, and the model they employ must be

regularized, with a free parameter fixed in an arbitrary manner.

The present work features a solution of the model at all temperatures, including closed

form asymptotic results for the Casimir force in the neighborhood of T = 0 (appendix I).

In section 3.2, we will define our lattice model, which has no free parameters, and formulate

the spherical constraints. In section 3.3, we will consider the three-dimensional bulk system

before describing the finite-size system in section 3.4. The numerical methods used to solve

the system and generate our Casimir scaling curves are explained in section 3.5. Finally, we

conclude with a summary and discussion of our findings in section 3.6.
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3.2 The Model

We are interested in the O(n) model, with n→∞, in a film geometry and with free boundary

conditions. Consider a d-dimensional square lattice, each of whose lattice sites is occupied

by an n-component vector spin interacting with its nearest neighbors in the usual way. We

will single out one dimension (called z) to be finite, L lattice spacings long. At each of the L

sites along the finite dimension, there is a (d− 1)-dimensional transverse layer containing a

total of A spins (A is large and will later be taken to infinity). We will eventually specialize

to d = 3, but for the time being we can describe this more general setup. Free boundary

conditions mean, in this system, that there is a layer of all zero spins on the top and on the

bottom of the film (i.e. z = 0 and z = L+ 1).

The model, as described, is not especially amenable to analysis. However, owing to the

work of Stanley[22] and Knops[76], we know that this model is equivalent to a form of the

spherical model, wherein the vector spins are replaced by real-valued scalar spins and each

(d − 1)-dimensional layer satisfies a spherical constraint
∑
s2 = A. We simplify matters

even further by using the mean spherical model which gives the same results as the spherical

model in the thermodynamic limit, i.e. when A is large.

Our Hamiltonian is

H = −J
∑
⟨s,s′⟩

ss′ + J
∑
i

Λi

(∑
j

s2
i,j − A

)
(3.9)

where the first summation is taken over nearest neighbor spins s and s′, which may each lie

in the same layer or in adjacent layers. J is the positive ferromagnetic coupling and Λi is

the spherical field for layer i which will be used to enforce the mean spherical constraints.

The notation si,j refers to spin j in layer i, with i = 1, . . . , L and j = 1, . . . , A. The partition

function is

Z =
∑
{s}

e−�H =

∫ (∏
i,j

dsi,j

)
e−�H , (3.10)
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summing over all possible configurations of the spins. The per-layer spherical constraints are

0 =

〈∑
j

s2
i,j

〉
− A = − 1

�J

∂ lnZ

∂Λi

, (3.11)

for each i = 1, . . . , L. Satisfying the constraints determines the Lagrange multipliers Λi.

Now we use some tricks, standard for the Gaussian and spherical models, which enable us

to find a closed form for the partition function. Once we have done that, it will be possible

to concisely write down the mathematical problem facing us. First, we Fourier expand our

spin variables in lattice modes. Let

si,j = A−1/2
∑
q

si(q)eirj ⋅q, (3.12)

where q ranges over the first Brillouin zone of the ith layer’s (d− 1)-dimensional lattice and

rj is the position of spin si,j within that lattice.

To understand the nearest neighbor terms, first fix i and j and consider spin si,j. It has

2(d−1) nearest neighbors in layer i, and one nearest neighbor in each of layer i−1 and layer

i+1. At the boundaries, i = 1 and i = L, this is still valid; our free boundary conditions put

s0,j = sN+1,j = 0 for all j. For neighbors within the layer, the Fourier-expanded interaction

has terms like ∑
si,jsi,j′ =

1

A

∑
j′,q,q′

si(q)si(q
′)eirj ⋅qeirj′ ⋅q

′
,

and rj′ is simply related rj because they are neighbors on a square lattice. Specifically,

rj′ = rj ± aei, i = 1, . . . , (d − 1), with lattice spacing a and standard basis vectors ei in

the layer (this will lead to cosine terms). On the other hand, the neighbors in adjacent

layers have the same rj but si±1 rather than si. Summing over i and j will count every

nearest-neighbor link in the system twice, so we divide everything by two to correct the

double-counting. Taking the lattice spacing a to be one, we therefore have

− J
∑
⟨s,s′⟩

ss′ = − J

2A

∑
i,j

∑
q,q′

{
d−1∑
k=1

si(q)si(q
′)eirj ⋅(q+q′)2 cos(q′k)

+

[
si(q)si−1(q′) + si(q)si+1(q′)

]
eirj ⋅(q+q′)

}
. (3.13)
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An orthogonality relation on this lattice is∑
j

exp (irj ⋅ q) = A�q0 (3.14)

which allows us to perform the sums over j and q′ in Eqn. (3.13). We find

−J
∑
⟨s,s′⟩

ss′ = −J
2

∑
i,q

[
si(q)si−1(−q) + si(q)si+1(−q) +

d−1∑
k=1

2 cos(qk)si(q)si(−q)

]
. (3.15)

The Lagrange multiplier terms give

J
∑
i

Λi

(∑
j

s2
i,j − A

)
= J

∑
i

Λi

∑
q

si(q)si(−q)− JA
∑
i

Λi, (3.16)

and so the entire Hamiltonian is

H =
J

2

∑
i,j,q

si(q)

[(
2Λi − 2

d−1∑
k=1

cos(qk)

)
�ij −

(
�i,j+1 + �i,j−1

)]
sj(−q)

− JA
∑
i

Λi. (3.17)

If the system was translationally invariant along the z direction, then the Hamiltonian

would have been diagonalized by this method. As it stands, it is tri-diagonal instead. Nev-

ertheless, we may use this result to evaluate the partition function integral. First, we com-

pactify our notation by defining

ℋij =

⎛⎜⎜⎜⎜⎜⎜⎝
2Λ1 −1 0 ⋅ ⋅ ⋅

−1 2Λ2 −1

0 −1 2Λ3

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠
ij

=

⎧⎨⎩
2Λi, i = j

−1, ∣i− j∣ = 1

0, otherwise

(3.18)

and the corresponding

ℋ(q) = ℋ−

[
2
d−1∑
k=1

cos qk

]
IL, (3.19)

with IL the L × L identity matrix. Finally, taking the complex conjugate of Eqn. (3.12)

shows that si(−q) = si(q)†. This enables us to express the Hamiltonian as the quadratic

form

H = −JA
∑
i

Λi +
J

2

∑
q

∑
i,j

si(q)† [ℋ(q)]ij sj(q). (3.20)
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Now the partition function may be evaluated:

Z =

∫ (∏
i,j

dsi,j

)
e−�H

= e�JA
∑
i Λi

∫ ∏
q

(∏
i

dsi(q) exp

[
−�J

2
s(q)†ℋ(q)s(q)

])
(3.21)

where we have changed variables si,j → si(q), as defined in Eqn. (3.12). The Jacobian of

the transformation can be shown to be unitary and thus have determinant of magnitude 1.

For each value of q, the Gaussian integral is evaluated according to∫
dx1 ⋅ ⋅ ⋅ dxL exp

(
−x†ℳx

)
=

√
�L

detℳ
. (3.22)

Therefore the partition function is

Z = e�JA
∑
i Λi
∏
q

√
�L

det(�Jℋ(q)/2)
= e�JA

∑
i Λi
∏
q

√
(2�)L

(�J)L det(ℋ(q))
. (3.23)

Again, we remark at this point that, in a translationally invariant system, the matrix ℋ(q)

is diagonal and its determinant is simply the product of its diagonal elements. Thus, that

system has a truly closed form expression for its partition function. On the other hand, we

have a tri-diagonal matrix in our problem, and its eigenvalues are not known in closed form

(though they can easily be determined numerically if all other parameters are specified).

Continuing, the free energy in this system is

ℱ = − 1

�
lnZ = −JA

∑
i

Λi +
1

2�

∑
q

ln[det(ℋ(q))]− 1

2�
AL ln

(
2�

�J

)
(3.24)

where we have made use of the fact that there are A points in the first Brillouin zone of

the lattice of the (d − 1)-dimensional layer. The mean spherical constraint, equivalent to

minimizing the free energy with respect to the Λi, is

0 =
∂ℱ
∂Λi

=
1

2�

∑
q

∂ ln[det(ℋ(q))]

∂Λi

− JA (3.25)

for each i = 1, . . . , L. We can write the constraints more explicitly by using the matrix

identity
∂ ln[det(ℳ)]

∂Λi

= tr

(
ℳ−1∂ℳ

∂Λi

)
=
∑
j,k

ℳ−1
kj

(
∂ℳ
∂Λi

)
jk

, (3.26)
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and computing (∂ℋ(q)/∂Λi)jk = 2�ij�ik for our particular matrix, Eqn. (3.19). Thus the

constraints take the form

�JA =
∑
q

[ℋ(q)]−1
ii . (3.27)

Now the problem is that of determining the spherical fields Λi which satisfy Eqn. (3.27) for

i = 1, . . . , L. Before proceeding with that computation, we consider the simpler bulk model

which is needed in computing the Casimir force.

3.3 The Bulk System

In considering the bulk version of the model from section 3.2, we retain the Hamiltonian, cf.

Eqn. (3.9),

H = −J
∑
⟨s,s′⟩

ss′ + J
∑
i

Λi

(∑
j

s2
i,j − A

)
. (3.28)

The difference is that we now let the system extend infinitely along the z-axis. This grants us

two simplifications. First, translational invariance implies that all Λi will effectively be equal

to some value Λ. Second, we can Fourier transform over the entire lattice rather than over

individual layers independently. To draw a clear analogy with the previous computation, we

will still say that the z-axis has L layers, but with the understanding that L is very large or

infinite. The Hamiltonian then simplifies as

H = −J
∑
⟨s,s′⟩

ss′ + JΛ
∑
i

(∑
j

s2
i,j − A

)
= −J

∑
⟨s,s′⟩

ss′ − JΛAL+ JΛ
∑
s

s2. (3.29)

Next, we Fourier transform our spins according to

si = (AL)−1/2
∑
q

s(q)eiri⋅q (3.30)

where q ranges over the first Brillouin zone of the entire d-dimensional lattice. The Hamil-

tonian then takes the form

H = J
∑
q

(
Λ−

d∑
k=1

cos(qk)

)
s(q)s(−q)− JΛAL (3.31)
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and the partition function is computed to be

Z = exp(�JΛAL)
∏
q

[
�J

�

(
Λ−

d∑
k=1

cos(qk)

)]−1/2

. (3.32)

The free energy per transverse length per unit area is

ℱbulk

AL
= −JΛ +

1

2�AL

∑
q

ln

(
Λ−

d∑
k=1

cos(qk)

)
+

1

2�
ln

(
�J

�

)
, (3.33)

so that the spherical constraint is

0 =
�

AL

∂ℱbulk

∂Λ
= −�J +

1

2AL

∑
q

1

Λ−
∑d

k=1 cos(qk)
. (3.34)

For large system size AL, the sum over Brillouin zone is well-approximated by an integral∑
q

≈ (q = 0 term) +
AL

(2�)d

∫ �

−�
ddq, (3.35)

where the q = 0 term must be singled out (as in the Bose-Einstein condensate) when the

dimension is greater than two2. Specifically, in d = 3, the spherical constraint is (letting

R = �J)

16�3R =
8�3

AL
⋅ 1

Λ− 3
+

∫ �

−�

dqx dqy dqz
Λ− cos qx − cos qy − cos qz

, (3.36)

determining the spherical field Λ for a given temperature. Note that, because AL ≫ 1,

the first term on the right hand side is entirely negligible unless Λ is extremely close to 3.

Ignoring it, we have

16�3R =

∫ �

−�

dqx dqy dqz
Λ− cos qx − cos qy − cos qz

. (3.37)

In order to avoid integrating across a singularity, we evidently must have Λ ≥ 3. In fact,

when Λ = 3, this integral is finite and was first computed by Watson[79]. As Λ increases

from 3, the value of the integral decreases, and so there exists a maximum value of R = �J

for which we can find a solution. This value is given by

Rc =
1

16�3

∫ �

−�

dqx dqy dqz
3− cos qx − cos qy − cos qz

≈ 0.25273, (3.38)

2
∫
ddq/(d−

∑
k cos(qk)) ∼

∫
dq qd−3 in the vicinity of small q = ∣q∣, after switching to polar coordinates.

This integral is convergent if d > 2 and needs the q = 0 term in order for there to be a solution to the
spherical constraint for T < Tc.
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and the corresponding temperature Tc ≈ J/(0.25273kB). When T > Tc, Λ is determined

numerically from Eqn. (3.37), while for T < Tc, we must appeal to Eqn. (3.36) and find that

Λ = 3 +O
(

1
AL

)
≈ 3. Berlin and Kac discuss this result in more detail in their appendix C,

and show that Tc is in fact a critical point[23].

We observe that the unitless free energy density, �ℱbulk/AL, is approximately constant

with respect to Λ for T < Tc. Specifically, in that regime, we keep the q = 0 term of the

sum in Eqn. (3.33) but find it to be vanishingly small:

1

2AL
ln(Λ− 3) ∼ 1

2AL
ln(AL)→ 0. (3.39)

Therefore, in the bulk system, we may take Λ = 3 when T < Tc.

Once the spherical field Λ has been determined, the free energy density in units of kBT

is, from Eqn. (3.33),

�fbulk =
�ℱbulk

AL
= −RΛ +

1

2
ln

(
R

�

)
+

1

16�3

∫ �

−�
dqx dqy dqz ln (Λ− cos qx − cos qy − cos qz) . (3.40)

Recall that R = �J contains the explicit temperature dependence in the above expression

(though Λ also depends on temperature). This free energy density is the bulk model’s

quantity of interest, to which we will need to refer when we subsequently compute the

Casimir force. The numerical evaluation of the integral will be discussed in section 3.5.

3.4 The Finite-Size System

We now return to the model as defined in section 3.2, with a finite number of layers, L. It

was previously shown that the spherical fields Λl, with l = 1, . . . , L, satisfy the constraint

equations, cf. Eqn. (3.27),

RA =
∑
q

[ℋ(q)]−1
ii (3.41)

for each i = 1, . . . , L. Our present aim is to rewrite this equation in a nicer form.
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Given values for the Λl, the spectrum of the matrixℋ is determined. Let {al} and {∣ (l)⟩}

be the sets of eigenvalues and normalized eigenvectors, respectively, of ℋ. As ℋ(q) is simply

related to ℋ via Eqn. (3.19), we see that its eigenvectors are the same while its eigenvalues

are slightly modified. We can thus perform an outer product expansion for ℋ(q)−1:

ℋ(q)−1 =
L∑
l=1

∣ (l)⟩ 1

al − 2
∑d−1

k=1 cos qk
⟨ (l)∣. (3.42)

The constraint equations involve diagonal entries of this matrix, so the constraint now reads

R =
1

A

L∑
l=1

 
(l)
i

2∑
q

1

al − 2
∑d−1

k=1 cos qk
, (3.43)

for each i = 1, . . . , L, and the sum over Brillouin zone can once again be approximated by

an integral, ∑
q

≈ (q = 0 term) +
A

(2�)d−1

∫ �

−�
dd−1q, (3.44)

if we take the transverse system size A to be large.

We now limit our focus to the three dimensional system. The q = 0 term may safely be

ignored, per the comments and footnote in section 3.3. In higher dimensions, it would have

to be retained. With d = 3, the constraint is therefore

R =
1

(2�)2

L∑
l=1

 
(l)
i

2
∫ �

−�

dqx dqy
al − 2 cos qx − 2 cos qy

(3.45)

for each i. The integral can be evaluated in closed form (see appendix G), giving the concise

result

R =
2

�

L∑
l=1

 
(l)
i

2 1

al
K

(
4

al

)
, i = 1, . . . , L, (3.46)

with K(k) the complete elliptic integral of the first kind with modulus k.

The problem is therefore, given an inverse temperature R = �J , to determine the values

{Λl} such that the spectrum of the matrix ℋ satisfies the L simultaneous equations, Eqn.

(3.46). Once the {Λl} are in hand, we must compute the free energy according to Eqn.

(3.24). In the case d = 3, that expression for the free energy specializes to

�ℱ
A

=
1

2
L ln

(
R

2�

)
−R

L∑
l=1

Λl +
1

8�2

L∑
l=1

∫ �

−�
dqx dqy ln (al − 2 cos qx − 2 cos qy) . (3.47)
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This integral may also be evaluated in terms of special functions (see appendix G), yielding

�ℱ
A

=
1

2
L ln

(
R

2�

)
+

1

2

L∑
l=1

(
ln al − 2RΛl −

2

a2
l

⋅ 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;

16

a2
l

))
(3.48)

as our final expression for the free energy density, with 4F3 a generalized hypergeometric

function. In what follows, we analyze the system numerically and compute its Casimir force.

3.5 Numerical Solution of the Model

We will use Newton’s method to solve for the {Λl} which satisfy the simultaneous equations,

Eqn. (3.46), for any particular temperature. In order to implement the method, we must

first compute derivatives of the constraint equations with respect to the spherical fields {Λl}.

To begin, define

fi(Λ) = −R +
2

�

L∑
l=1

 
(l)
i

2 1

al
K

(
4

al

)
(3.49)

for each i = 1, . . . , L. We will require that fi(Λ) = 0 for each i. The dependence on Λ is

implicit in the eigenvalues al and eigenvectors ∣ (l)⟩ of the matrix ℋ. Derivatives of these

with respect to parameters are computed in appendix H. The results, familiar from first

order perturbation theory, are that

∂al
∂Λj

= 2  
(l)
j

2
(3.50)

and
∂ 

(l)
i

∂Λj

= 2
∑
m∕=l

 
(m)
j  

(l)
j

al − am
 

(m)
i . (3.51)

Therefore, we compute the Jacobian for Newton’s method to be

Dij =
∂fi
∂Λj

=
4

�

L∑
l=1

L∑
m=1

 
(l)
i  

(m)
i  

(l)
j  

(m)
j

⎧⎨⎩
E(4/al)

16−a2
l
, m = l

2K(4/al)
al(al−am)

, m ∕= l
, (3.52)

where E(k) is the complete elliptic integral of the second kind with modulus k.

Newton’s method works very well at high temperatures, where the eigenvalues al are

comfortably larger than 4. We see empirically that one eigenvalue, call it a1, gets arbitrarily
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close to 4 as we approach low temperatures. The condition al > 4 is physically necessary,

becauseℋ(q) must be positive definite for the partition function, Eqn. (3.21), to not diverge.

It is not a priori obvious that the system will be attracted to an eigenvalue of 4, but that is

nevertheless how the system behaves.

Mathematically, we see why this might happen. K(x) ∼ − ln(1− x) for x just below 1.

When T gets small and R gets large, the constraint equations, Eqn. (3.49), begin to rely on

the divergence of K(x), forcing an eigenvalue to approach 4 from above. In fact, a back of

the envelope computation shows that

R ∼ − ln

(
1− 4

a1

)
(3.53)

leads to (a1 − 4) ∼ e−R, i.e. a1 gets exponentially close to 4. Newton’s method is, unsur-

prisingly, unstable in this region because the guesses computed often send the system into

unphysical regions with eigenvalues below 4.

Once a1 is close enough to 4 that Newton’s method begins to have issues, the problem

can be solved to an excellent approximation by implementing the following changes:

∙ Replace K(a1/4) in the constraint equation with a new free coefficient, C.

∙ Enforce the condition that a1 = 4 exactly.

Specifically, the new constraints are

0 = fi(Λ, C) = −R + C  
(1)
i

2
+

2

�

L∑
l=2

 
(l)
i

2 1

al
K

(
4

al

)
(3.54)

for i = 1, . . . , L, and an additional constraint

0 = g(Λ, C) = a1 − 4. (3.55)

These (L + 1) equations are to be solved for the (L + 1) variables {Λl} and C. The (L +

1)× (L+ 1) Jacobian is computed in the same way as before, but with the (L+ 1)-st column

given by ∂fi/∂C. and the (L+ 1)-st row given by ∂g/∂Λj.
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Once we have the means to compute the {Λl} for a given system size and temperature,

we would like to construct the Casimir force. This involves taking a (discrete) derivative

of free energy with respect to system size, and subtracting off the corresponding bulk free

energy in order to capture the purely finite-size contribution. Therefore, we write

FCas(L)

A
= − ∂

∂L

(
ℱ
A
− Lfbulk

)
= fbulk −

ℱ(L+ 1)/A−ℱ(L− 1)/A

2
, (3.56)

where we have symmetrized the discrete derivative, and we refer to the quantities defined in

Eqns. (3.40) and (3.48).

A final note, pertaining to the numerical evaluation of the bulk free energy, is in order.

The integral appearing in Eqn. (3.40),

I =
1

16�3

∫ �

−�
dqx dqy dqz ln (Λ− cos qx − cos qy − cos qz) , (3.57)

is tricky to compute numerically unless Λ is considerably larger than 3. The case of Λ = 3

was studied by Joyce and Zucker[80], and they succeeded in computing it to 51 digits,

I(Λ = 3) ≈ 0.4901210612051 . . . . (3.58)

We note that
dI

dΛ
=

1

16�3

∫ �

−�
dqx dqy dqz

1

Λ− cos qx − cos qy − cos qz
, (3.59)

is the relatively well-studied “generalized Watson integral”. Fisher and Barber developed a

series expansion of this integral[37] for Λ ≈ 3, showing that

dI

dΛ
= Rc −

1

4�

√
2(Λ− 3) +O(Λ− 3), (3.60)

where we recall from Eqn. (3.38) that Rc = dI
dΛ

(Λ = 3). Integrating with respect to Λ, we

find the series expansion for I(Λ),

I(Λ) ≈ I(Λ = 3) +Rc(Λ− 3)−
√

2

6�
(Λ− 3)3/2 +O

(
(Λ− 3)2

)
, (3.61)

valid when Λ ≈ 3. This series can be used in the region where numerical evaluation of the

integral I(Λ) is slow and inaccurate.
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3.6 Discussion and Concluding Remarks

After implementing the numerical methods of section 3.5, we study the system for a wide

range of system sizes L. The appropriate scaling variable in this model is

x = Lt = LRc

(
1

R
− 1

Rc

)
, (3.62)

because � = 1 for the bulk three-dimensional spherical model[15]. The scaled Casimir

pressure, L3�FCas/A, is plotted versus x in fig. 3.1 around the critical region. By the

definition of x, each curve extends to x = −L which corresponds to T = 0. However, fig.

3.1 highlights the most interesting part of the curve, which is the dramatic dip near Tc. A

similar dip is seen in the data from Garcia and Chan’s experiment on 4He near the lambda

Figure 3.1: The Casimir force in the O(n → ∞) model with free boundary conditions in a

three-dimensional film geometry, focusing on the critical region x ≈ 0. The curves, from top

to bottom, are for system sizes L = 10, L = 20, L = 30, L = 50, L = 100, L = 200, and

L = 500. The scaled Casimir pressure, in units of kBT/L
3, is plotted against the scaling

variable x = Lt.
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point. That system is the O(2) model under free boundary conditions, whereas ours is the

O(n → ∞) model. The plots are qualitatively similar, but should not be expected to be

precisely the same.

As L becomes very large, the curves converge to the finite-size scaling function #(x) for

the Casimir force in this system. We find a value for the Casimir amplitude,

Δ =
1

2
#(0) ≈ −0.0107712, (3.63)

which agrees with the value reported by Diehl[41] to within 0.02%. The extremum of the

Casimir force is located at x ≈ −1.43438 and has a value of

#min ≈ −0.1269001, (3.64)

which again agrees with the previously reported value to within 0.03%.

A lot may be said about this system in the asymptotic low temperature regime. In

appendix I, we perform a full calculation to derive the fact that, for T ≈ 0,

FCas(x) ∼ − �(3)

8�L3

[
1 +

2.755

L2
+

7.890

L4

]
+

1

4L4

x+ L

xRc

[
0.02246 + 0.04567 lnL+

0.01973 + 0.2672 lnL

L2

]
, (3.65)

where the numerical constants are specified in closed form in sections I.3 and I.4. The

agreement with the numerical data is excellent even as the temperature gets moderately

large. A comparative plot is given in fig. 3.2 for L = 10. Of particular note in the asymptotic

result is the asymptotic value of the Casimir force, FCas(T = 0), being non-zero. This was

seen by Garcia and Chan experimentally for the O(2) model, and it is a famous result[12]

for systems with spontaneously broken symmetries at T = 0.

The lnL terms in the asymptotic regime are an unexpected result, as they do not appear

to fit into a scaling form. That is, we would expect only a scaling combination Lt to show

up, which would imply the existence of a ln ∣T − Tc∣. However, the calculation perfomed

explicitly in appendix I leaves little room to question that this ln ∣T − Tc∣ is not there.
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Figure 3.2: The Casimir force for L = 10: numeric results (solid, blue) compared to the

asymptotic expression (red, dashed) given by Eqn. (3.65). The asymptotic result is valid in

the vicinity of x = −L. With L = 10, it offers stunning agreement with the numerics even

into the critical region just below x = 0.

Finite-size scaling theory only makes predictions about the neighborhood around the bulk

critical point, so this does not contradict scaling.

In the vicinity of Tc, we have still not determined what scaling corrections exist, account-

ing for the lack of data collapse in fig. 3.1 at small values of L. Privman argues that there

exists a ln ∣t∣ correction near criticality for a system with d = 3 and free boundary conditions,

but does not predict lnL dependence away from the critical region[19]. Diehl contends that

degeneracy of critical exponents shows that the Casimir amplitude (i.e. at T = Tc) will

have a correction[41] ∼ lnL/L. Brankov and Danchev find logarithmic corrections below

Tc, but not at Tc, for the spherical model under free boundary conditions[81]. We intend to

determine the nature of the scaling corrections in our results in a subsequent publication,

but the issue remains open for the present.
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The results thus presented on the O(n → ∞) model with free boundary conditions are

interesting and encouraging. While reaffirming the numerical results of Diehl in the critical

region, they also extend to low temperatures, both numerically and with explicit closed

form expressions. Furthermore, the model as defined in this chapter has no free parameters,

requires no regularization, and does not find need to employ any effective L, which may all

be seen as advantages over the model of Diehl. Being related to the Bose gas and with a

Casimir scaling function bearing a strong resemblance to the experimental results of Garcia

and Chan, the model may yet find practical applications.
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APPENDIX A

Free Energy in the Lattice XY Mean-Field Model

We claim that

f({mi}, N) =
N+1∑
i=0

[
1

2
mi ⋅Hi −

1

�
ln (I0 (�mHi))

]
(A.1)

is the free energy functional of the lattice model considered in section 2.2. Indeed, here we

will demonstrate that minimizing it with respect to the mi leads to the mean-field consistency

equations

mi = m
Hi

Hi

I1(�mHi)

I0(�mHi)
. (A.2)

Recall that Hi = J(2(d − 1)mi + mi−1 + mi+1), and take m−1 = mN+2 = 0 for notational

convenience. Differentiating,

0 = ∇mi
f = 2J(d− 1)

[
mi −m

Hi

Hi

I1(�mHi)

I0(�mHi)

]
+ J

[
mi−1 −m

Hi−1

Hi−1

I1(�mHi−1)

I0(�mHi−1)

]
+ J

[
mi+1 −m

Hi+1

Hi+1

I1(�mHi+1)

I0(�mHi+1)

]
(A.3)

for i = 1, . . . , N . If i = 0 (i = N + 1), we find the same condition with the second (third)

term omitted. Defining

gi = mi −m
Hi

Hi

I1(�mHi)

I0(�mHi)
, g−1 = gN+2 = 0, (A.4)

we may write Eqn. (A.3) as

0 = ∇mi
f = 2J(d− 1)gi + Jgi−1 + Jgi+1 (A.5)

for each i = 0, . . . , N + 1. In order to show that (2.8) holds, we must show that (A.5) is only

solved when gi = 0 for all i. This is seen by writing the linear equations (A.5) in matrix
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form, i.e. Ag = 0 with tridiagonal (N + 2)× (N + 2) matrix

A = J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(d− 1) 1 0 ⋅ ⋅ ⋅ 0

1 2(d− 1) 1
...

0 1
. . .

...

1

0 ⋅ ⋅ ⋅ 1 2(d− 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.6)

whose determinant is computed by recursion as

detA =
JN+2

2
√

(d− 1)2 − 1

[(
d− 1 +

√
(d− 1)2 − 1

)N+3

−
(
d− 1−

√
(d− 1)2 − 1

)N+3
]
. (A.7)

Simplifying the difference of powers, we have

detA = JN+2

N+2∑
k=0

(
d− 1 +

√
(d− 1)2 − 1

)k (
d− 1−

√
(d− 1)2 − 1

)N+2−k
, (A.8)

which is patently positive for d ≥ 2 and integer N ≥ 0, so that the only solution is gi = 0,

as desired.
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APPENDIX B

Derivatives of the Ginzburg-Landau Free Energy

Functional

We take the free energy functional

ℱ [Φ(z), '(z)] =

∫ L/2

−L/2
dz

[
b

2

(
dΦ

dz

)2

+
b

2
Φ2

(
d'

dz

)2

+
1

2
atΦ2 +

1

4
gΦ4

]
(B.1)

and wish to extremize it with respect to the amplitude and phase profiles, Φ(z) and '(z).

First consider a variation '→ '+�' with the increment �' small throughout and vanishing

at the boundaries z = ±L/2. We have

ℱ [Φ, '+ �'] =

∫ L/2

−L/2
dz

[
b

2

(
dΦ

dz

)2

+
b

2
Φ2

(
d'

dz
+

d

dz
�'

)2

+
1

2
atΦ2 +

1

4
gΦ4

]

= ℱ [Φ, '] + b

∫ L/2

−L/2
dzΦ2d'

dz
⋅ d
dz
�'+O((�')2), (B.2)

where we neglect terms of higher order. We integrate by parts, finding

ℱ [Φ, '+ �']−ℱ [Φ, '] = bΦ2d'

dz
�'

∣∣∣∣L/2
−L/2

− b
∫ L/2

−L/2
dz

d

dz

(
Φ2d'

dz

)
�'. (B.3)

The surface terms vanish because the variation �' vanishes there. In order to be at a free

energy extremum, the difference on the left hand side of the above equation must vanish (to

first order in �') for arbitrary �'. This can only happen if the rest of the integrand vanishes

identically, i.e. if
d

dz

(
Φ2d'

dz

)
= 0. (B.4)

This is Eqn. (2.15), which may also be understood in terms of functional derivatives as the

condition that �ℱ/�' = 0.
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Now we turn our attention to extremizing with respect to Φ. The same approach yields

ℱ [Φ + �Φ, '] = ℱ [Φ, '] +

∫ L/2

−L/2
dz

(
b
dΦ

dz
⋅ d
dz
�Φ +

[
bΦ

(
d'

dz

)2

+ atΦ + gΦ3

]
�Φ

)
, (B.5)

and we again integrate by parts which gives

ℱ [Φ + �Φ, ']−ℱ [Φ, '] = b
dΦ

dz
�Φ

∣∣∣∣L/2
−L/2

+

∫ L/2

−L/2
dz

[
−bd

2Φ

dz2
+ bΦ

(
d'

dz

)2

+ atΦ + gΦ3

]
�Φ. (B.6)

As before, we notice that the surface terms vanish and we argue that this integral should be

zero for arbitrary �Φ and therefore

b
d2Φ

dz2
= bΦ

(
d'

dz

)2

+ atΦ + gΦ3, (B.7)

which agrees with Eqn. (2.17).

In order to compute the Casimir force, we take a functional derivative of ℱ with respect

to L. This is non-trivial because Φ and ' implicitly depend on L. Again we consider a

difference

ℱ [Φ + �Φ, '+ �', L+ �L]−ℱ [Φ, ', L], (B.8)

but the variations �Φ and �' are no longer arbitrary. Instead, they are reactions to the

interval being stretched.

Break up ℱ into an integral over the old interval [−L/2, L/2] and an integral over the

tiny extensions [±L/2,±(L+ �L)/2]. For the integration over [−L/2, L/2], we have already

computed the result of perturbing Φ and '. However, the variations �Φ and �' now vanish

at ±(L + �L)/2 rather than at ±L/2, so the surface terms from integration by parts give

non-zero contributions. We will handle those terms carefully in a moment. On the other

hand, the integrals over the extension regions are trivially given by approximating them

as rectangles of width �L/2 and height equal to the value of the integrand at z = ±L/2.
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Therefore, since the integrand is an even function of z, we have

ℱ [Φ + �Φ, '+ �', L+ �L]−ℱ [Φ, ', L] ≈ b
dΦ

dz
�Φ

∣∣∣∣L/2
−L/2

+ bΦ2d'

dz
�'

∣∣∣∣L/2
−L/2

+ 2 ⋅ �L
2

(
b

2

(
dΦ

dz

)2

+
b

2
Φ2

(
d'

dz

)2

+
1

2
atΦ2 +

1

4
gΦ4

)∣∣∣∣∣
L/2

. (B.9)

Now, we reiterate that the quantities �Φ(±L/2) and �'(±L/2) are not arbitrary, but reflect

the changes that the profiles Φ and ' suffered as a result of varying L (this is illustrated in

fig. B.1). Taylor expanding ', we find

'

(
L

2

)
= '

(
L+ �L

2
− �L

2

)
= '

(
L+ �L

2

)
− �L

2

d'

dz

∣∣∣∣
L+�L

2

= 'old

(
L

2

)
+ �'

(
L

2

)
, (B.10)

where we retain our old boundary condition which means that '((L + �L)/2) = 'old(L/2).

Continuing,

�'

(
L

2

)
= − �L

2

d'

dz

∣∣∣∣
L+�L

2

≈ − �L

2

d'

dz

∣∣∣∣
L/2

, (B.11)

where we have Taylor expanded again and kept only leading order terms in �L. The

other three perturbations are expressed in similar fashion in terms of �L, and we find the

result

ℱ [Φ + �Φ, '+ �', L+ �L]−ℱ [Φ, ', L]

�L
≈ − b

(
dΦ

dz

)2
∣∣∣∣∣
L/2

− bΦ2

(
d'

dz

)2
∣∣∣∣∣
L/2

+

(
b

2

(
dΦ

dz

)2

+
b

2
Φ2

(
d'

dz

)2

+
1

2
atΦ2 +

1

4
gΦ4

)
L/2

. (B.12)

Combining terms and using Eqns. (2.16) and (2.22) to remove the derivatives, we end up

with
�ℱ
�L

= −1

2
b
P 2
'

Φ2
0

+
1

2
atΦ2

0 +
1

4
gΦ4

0, (B.13)

so that the Casimir force reported in Eqn. (2.29) follows immediately.
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Figure B.1: A schematic illustration of the change suffered by the angle profile '(z) when

L is increased by �L. The old and new profiles share the same boundary condition, but the

boundary moves. We are interested in the quantity �'(L/2), indicated by �' in the figure,

which is the change in '(L/2).
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APPENDIX C

Newton’s Method

For a function f : ℝ → ℝ, Newton’s method is an algorithm for finding a root, i.e. a point

r such that f(r) = 0. Starting at some chosen r1, one computes the tangent to the graph of

f at (r1, f(r1)) and follows it to its intersection with the x-axis. That intersection point is

taken to be r2 and the procedure is repeated. There are instances in which Newton’s method

can fail (certain functions or bad starting points, etc.), but we will forgo their discussion here.

In non-pathological cases, Newton’s method usually converges and does so very quickly[6].

In what follows, we assume the absence of any pathology.

The tangent line at (ri, f(ri)) is y = f(ri) + (x − ri)f ′(ri). The next iteration, ri+1, is

that x value which gives an intersection with the x-axis, i.e.

ri+1 = ri − [f ′(ri)]
−1
f(ri). (C.1)

Of course, the multiplicative inverse of f ′(ri) is simply 1/f ′(ri). However, writing it as in

Eqn. (C.1) suggests a general form.

Suppose we now have a function f : ℝn → ℝn. Instead of following a tangent line to zero,

we imagine following the tangent plane to zero in each coordinate. The tangent plane at r(i)

is given by

yj = fj
(
r(i)
)

+
[
Df

(
r(i)
)]
jk

(
r− r(i)

)
k

(C.2)

where the upper index r(i) now refers to the iteration counter, while lower indices are reserved

for spatial components of the vectors. In particular, we split f into components f(r) =

(f1(r), . . . , fn(r)). A summation is implied over k = 1, . . . , n and we define the Jacobian[
Df

(
r(i)
)]
jk

=
∂fj
∂rk

∣∣∣∣
r(i)

. (C.3)
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Now we solve for the next iteration r(i+1) by multiplying through by [Df ]−1
lj , finding

r
(i+1)
l = r

(i)
l − [Df

(
r(i)
)
]−1
lj fj(r

(i)), (C.4)

in perfect analogy with Eqn. (C.1) but now involving matrix inversion.
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APPENDIX D

Analytical Results for the XY Ginzburg-Landau Model

Under Twisted Boundary Conditions

In this Appendix, we derive some analytical expressions needed for the numerical evaluation

of Eqn. (2.32) for the scaling function of the Casimir force.

We start by determining the behavior of the amplitude profile XΦ(�) per Eqn. (2.38).

In addition, we will also determine the phase angle profile '(�). Note that, in terms of the

scaling variables (2.30) and (2.34), we obtain the phase angle '(�) as

'(�) = pX3
0

∫ �

0

d�

X2
Φ(�)

. (D.1)

via Eqn. (2.16). For convenience, we repeat Eqn. (2.38):

1

2
− � =

1

2X0

∫ ∞
[XΦ(�)/X0]2

dx√
(x− 1)[x2 + x(1 + �) + p2]

, (D.2)

which will enable us to solve for XΦ(�). Let

x± =
1

2

[
−(� + 1)±

√
(� + 1)2 − 4p2

]
(D.3)

be the roots of the quadratic term in the square brackets in the denominator of (D.2).

In order to perform the integration in Eqn. (D.2), where the integrand is a positive

function for all points from the integration interval, one needs to know if these roots are real

or complex (see Fig. 8). Thus, there are two cases: A) the roots are real, and B) the roots

are complex conjugates of each other.

First consider the case

A) The roots x± are real.
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x-, x+< 1

x-, x+> 1

x-, x+Î C
x-= x+

x-<1, x+> 1

Τ=-1+2p

Τ=-1-2p

Τ=-2-p2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-10

-5

0

5

p

Τ

Figure D.1: The loci of points in the (p, �)-plane for which the roots x± possess the properties

discussed in the text. When any of the roots approaches the thick blue line, X0 →∞. This

is only possible for � < 0, i.e. when �X2
0 = xt → −∞.

In order to get a real-valued result, we must have the singularities to the left of x = 1,

forcing x− < x+ < 1. Then the value may be found in a table of integrals[82]:∫ ∞
y

dx√
(x− 1)(x− x+)(x− x−)

=
2√

1− x−
F

(
arcsin

√
1− x−
y − x−

,

√
x+ − x−
1− x−

)
, (D.4)

provided y ≥ 1 > x+ > x−. In fact, Eqn. (2.36) fixes y = 1, so we rewrite it as

X0 =
2√

1− x−
K(k), (D.5)

where k =
√

x+−x−
1−x− , F is the incomplete elliptic integral of the first kind and K(k) = F (�

2
, k)

is the complete elliptic integral of the first kind with modulus k. From Eqn. (D.2), we
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similarly obtain the more general relation

1

2
− � =

1

X0

√
1− x−

F

(
arcsin

√
1− x−

(XΦ(�)/X0)2 − x−
, k

)
, (D.6)

of which Eqn. (D.5) is the special case � = 0. Solving (D.6) for XΦ(�) we find

XΦ(�)2 = X2
0

[
x− +

1− x−
sn2
[
X0

√
1− x−

(
1
2
− �
)
, k
]] , (D.7)

where sn denotes the sine-amplitude Jacobi elliptic function.

Finally, inserting (D.7) into (D.1) and (2.37) and performing the integration, we arrive

at

' (�) =
pX0

x−

{
1

X0

√
1− x−

Π

[
x−

x− − 1
, am

(
X0

√
1− x−

(
1

2
− �
)
, k

)
, k

]
+� − 1

X0

√
1− x−

Π

[
x−

x− − 1
, k

]}
, (D.8)

and the special case �/2 = '(1/2) gives

� =
pX0

x−

{
1− 2

X0

√
1− x−

Π

[
x−

x− − 1
, k

]}
, (D.9)

where Π(n, �, k) and Π(n, k) are the incomplete and complete, respectively, elliptic integrals

of the third kind with modulus k1, and am(u, k) is the amplitude for Jacobi elliptic functions

with modulus k.

We also note here that the relationship between x±, � and p is straightforward. From

(D.3) we have

� = −1− x− − x+, p2 = x−x+. (D.10)

With these relations and Eqn. (D.5), we can compute everything. Fixing � and � , we can

solve (D.9) numerically for p. Then, knowing X0, the scaling function for the Casimir force

is found from Eqn. (2.35). These scaling functions are plotted in fig. 2.3.

1Note that Mathematica’s definition of the elliptic functions F , K, Π, am, etc. all use the “parameter”
m = k2, rather than the “modulus” k as the final argument. There is no discrepancy in the other arguments.
Therefore, to correctly input these functions into Mathematica, one has to square the final argument relative
to how it is written here.
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We now consider the case

B) The roots x± are complex.

In this case, the roots are complex conjugates of each other, i.e. x− = x+. Taking this

into account and using the corresponding expression from a table of integrals[83], we obtain∫ ∞
y

dx√
(x− 1)(x− x+)(x− x−)

=
1√
r
F

[
arccos

(
y − 1− r
y − 1 + r

)
, w

]
, (D.11)

where

r =
√

(1− x−)(1− x+) =
√

2 + � + p2, (D.12)

and

w2 =
1

2
+
x− + x+ − 2

4r
=

1

2

(
1− 3 + �

2
√

2 + � + p2

)
. (D.13)

According to Eqn. (D.2), the above implies that

� =
1

2
− 1

2X0

√
r
F

[
arccos

(
(XΦ/X0)2 − 1− r
(XΦ/X0)2 − 1 + r

)
, w

]
, (D.14)

and, for � = 0 with XΦ(� = 0) = X0, it follows that

X0 =
2√
r
K (w) . (D.15)

Solving (D.14) for XΦ gives

XΦ(�)2 = X2
0

[
1− r +

2r

1− cn
(
2X0

√
r
(

1
2
− �
)
, w
)] , (D.16)

where cn denotes the cosine-amplitude Jacobi elliptic function. Finally, inserting (D.16) in

(D.1) and (2.37) and performing the integration, cf. Eqn. (361.60) in Byrd and Friedman[83],

we find

'(�) =
pX0

1− r
� +

p(r + 1)

4
√
r(r − 1)

{
2Π

[
−(r − 1)2

4r
, w

]
−Π

[
−(r − 1)2

4r
, am

(
2X0

√
r

(
1

2
− �
)
, w

)
, w

]}
+

1

2
cot−1

(
2
√
r

p
⋅

dn
(
2X0

√
r
(

1
2
− �
)
, w
)

sn
(
2X0

√
r
(

1
2
− �
)
, w
)) . (D.17)
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Now, setting � = 1/2 in the above equation, we have

� =
pX0

1− r
+

p(r + 1)√
r(r − 1)

Π

[
−(r − 1)2

4r
, w

]
, (D.18)

where we have used Eqn. (D.15) and the identities dn(2K(w), w) = 1 and sn(2K(w), w) = 0.

The amplitude profile XΦ(�) and the angle profile '(�) are plotted in Fig. 9. Recall that the

relationships between x−, x+, � and p are given by Eqn. (D.10). As in the previous case,

X0, x− and x+ are known functions of � and p, and this equation is solved numerically to

produce the scaling function for the Casimir force.

From the expressions derived above, it is easy to reproduce the results previously known

for � = 0. As we will see, this provides a new representation of the older results which is

quite convenient for numerical evaluation. First, we note that, from Eqns. (2.16) and (2.34),

� = 0 implies that p = 0. Thus, from Eqn. (D.3), it follows that we are in the case A) of

real roots. Indeed, if � ≥ −1 then x+ = 0 and x− = −(� + 1), while for � < −1, x+ = ∣� + 1∣

and x− = 0. Note that, because the problem is non-physical when x+ ≥ 1, the case � < −1

actually only extends down2 to � = −2. With that in mind, we find, from Eqn. (D.5),

X0(�) =

⎧⎨⎩ 2K
(√
∣� + 1∣

)
, −2 < � ≤ −1

2√
�+2

K
(√

�+1
�+2

)
, � ≥ −1

(D.19)

For the scaling function of the Casimir force, Eqn. (2.35) gives

X
(+,+)
Cas (�) =

⎧⎨⎩
−4 (� + 2)2K

(√
∣� + 1∣

)4

, � ≤ −1

−4K
(√

�+1
�+2

)4

, −1 ≤ � ≤ 0

−16 �+1
(�+2)2K

(√
�+1
�+2

)4

, � ≥ 0

(D.20)

where we have denoted the � = 0 boundary conditions as (+,+). Denoting the argument

of the elliptic K function in a standard way with k and recalling that xt = �X2
0 , the above

expressions can be rewritten in the parametric form

X
(+,+)
Cas (xt) =

⎧⎨⎩
−4 (1− k2)

2
K(k)4, xt = −4(k2 + 1)K(k)2, xt ≤ −�2

−4K(k)4, xt = 4(2k2 − 1)K(k)2, −�2 ≤ xt ≤ 0

−16k2(1− k2)K(k)4, xt = 4(2k2 − 1)K(k)2, xt ≥ 0

. (D.21)

2See also: fig. D.1.
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The parameter k ranges over [0, 1) for the segment corresponding to xt ≤ −�2, over [0, 1√
2
]

for −�2 ≤ xt ≤ 0 and over [ 1√
2
, 1) for xt ≥ 0. The result (D.21) was originally due to

Krech[24]. The behavior of X
(+,+)
Cas (xt) is shown3 as a thick black line in fig. 2.3.

The scaling function of the Casimir force under (+,−) boundary condition in the Ising

mean-field model is[24]

X
(+,−)
Cas (xt) =

⎧⎨⎩
64k2(1− k2)K(k)4, xt = −8(2k2 − 1)K(k)2, xt ≤ 0

16K(k)4, xt = −8(2k2 − 1)K(k)2, 0 ≤ xt ≤ 2�2

16(1− k2)2K(k)4, xt = 8(k2 + 1)K(k)2, xt ≥ 2�2

. (D.22)

In this case, k runs over [0, 1) for xt ≥ 2�2, over [0, 1√
2
] for 0 ≤ xt ≤ 2�2 and over [ 1√

2
, 1)

for xt ≤ 0. This scaling function is shown in fig. 2.3 as a dashed line; it coincides with the

scaling function for � ≈ � until they split apart at large, negative temperatures.

Finally, note that the scaling functions X
(+,+)
Cas (x) and X

(+,−)
Cas (x), just derived, are related

through[84]

X
(+,+)
Cas (x) = −1

4
X

(+,−)
Cas (−x/2), (D.23)

which is easily checked. For instance, the xt ≥ 2�2 branch of X
(+,−)
Cas gets mapped to xt ≤

−�2. The relationship between xt and k acquires a factor of −1/2 and the value of the

function picks up a factor of −1/4. This then corresponds identically to the correct branch

of X
(+,+)
Cas . Furthermore, for the corresponding mean-field Casimir amplitudes, we have

Δ
(+,+)
Cas

Δ
(+,−)
Cas

=
−4K

(
1/
√

2
)4
/3

16K
(
1/
√

2
)4
/3

= −1

4
. (D.24)

3Again one must be careful of the notation in order to handle this in a CAS. For instance, to plot this in
Mathematica, it is necessary to input K(k) as EllipticK[k∧2].
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Figure D.2: Plots of the amplitude profile and the angle of the order parameter for � = �/3

and some choices of xt. We observe that, when the temperature increases, the value of the

amplitude in the middle of the system decreases. The twist of the local variables through the

system spans over the total system almost uniformly for low temperatures, while for higher

ones it concentrates more and more in the middle of the system where the amplitude is at

its smallest values.
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APPENDIX E

Low-Temperature Asymptotics of the XY

Ginzburg-Landau Model Under Twisted Boundary

Conditions

According to Eqn. (2.35), when xt < 0,

X
(�)
Cas(�) = X4

0 [p2 − (1 + �/2)2], (E.1)

where � and p are defined in Eqn.(2.34). We now endeavor to find the behavior of X
(�)
Cas(�)

for xt → −∞.

Let us first clarify what is meant by the asymptotic behavior of � and p in the regime

xt → −∞. For low temperatures, one expects Φ(z) ≈ Φ(z = 0) ≡ Φ0 and d'/dz ≈ �/L,

which correspond to a simple, smooth rotation from 0 to � with minimal amplitude variation.

From Eqn. (2.16) and the definition given in Eqn. (2.30), one then obtains X' ≈ �X2
0 and,

thus, from Eqn. (2.34), p ≈ �/X0. In terms of xt, the equation for the order parameter

amplitude is given in (2.56). Under the assumptions already made, the above equation

becomes 0 ≈ �2X0 + xtX0 + 2X3
0 . One concludes that X0 ≫ 1 with

X2
0 ≈ −(xt + �2)/2 (E.2)

when xt → −∞, and that 2 + � + p2 ≈ 0, i.e., that � → −2 − p2 when xt → −∞. Thus,

the regime which we need to consider in (E.1) is � → −2− p2 with p ≈ �/X0 ≪ 1. For the

Casimir force from Eqn. (E.1) we then obtain

X
(�)
Cas(xt → −∞) ≈ X4

0 [p2 − p4/4]. (E.3)
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In the asymptotic regime of interest, the roots x± of the previous section are real because

p ≪ 1 and
√

(� + 1)2 − 4p2 =
√

1− 2p2 + p4 ≈
√

1− 2p2. Thus, we need to study the

asymptotic behavior of X0 given by Eqn. (D.5), taking into account the right-hand side of

Eqn. (D.9) which relates X0 to �.

Setting

� = −2− p2 + �, (E.4)

where p≪ 1 and �→ 0, Eqn. (D.5) becomes

X0 ≈
2√

1− x−
K

(
1− 1

2
�

)
≈ ln

(
16

�

)
, (E.5)

while Eqn. (D.9) simplifies as

� ≈ pX0

x−

[
1− 2

X0

Π
(
−p2, 1− a

2

)]
≈ pX0

x−

[
1− 2

X0

⋅ X0

2

(
1 +

p2

X0

(2−X0)

)]
(E.6)

leading to the result

� = p(X0 − 2), (E.7)

where we have used Eqn. (E.5) when series expanding the elliptic Π. Note that Eqns. (E.5)

and (E.2) imply that � is exponentially small in
√
∣xt∣ and, thus, in the remainder we will

omit � in Eqn. (E.4) and in any expansion that involves � . Expressing p from Eqn. (E.7) in

terms of X0 and � and inserting the result in Eqn. (E.3), we obtain an expression for the

Casimir force in terms of X0 and �:

X
(�)
Cas(xt → −∞) ≈ �2

(
X2

0 + 4X0 + 12
)
− �4

4
. (E.8)

Then, making use of Eqn. (E.2), it follows that

X
(�)
Cas(xt) ≈

1

2
�2

[
∣xt∣+ 4

√
2∣xt∣+

1

2

(
48− 3�2

)]
, (E.9)

where xt → −∞. This is the result reported in Eqn. (2.33).
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APPENDIX F

Determining the Kink Temperature

In this Appendix, we employ the scaled variables defined by Eqn. (2.30). When the bound-

ary conditions are fully anti-symmetric, � = �, we find a kink in the Casimir force at a

temperature xt,kink below the bulk critical temperature, i.e. xt,kink < 0. At that point, the

two integration constants X0 and X' both switch from being identically zero (xt > xt,kink)

to being positive (xt < xt,kink). Note, however, that the quotient M = X'/X0 remains non-

zero for all temperatures. We determine the kink temperature by enforcing the boundary

conditions, Eqns. (2.24) and (2.25).

At the transition point, things are simplified because X0, X' → 0. The length condition

(2.24) takes the form
1

2
=

∫ ∞
0

dXΦ

(M2
kink + xt,kinkX2

Φ +X4
Φ)

1/2
. (F.1)

The twist condition must be treated with more care because the integrand appears to be

singular when X0 = 0. Without taking X0 to zero, (2.25) may be re-expressed as

�

2
= MX0

∫ ∞
X0

dXΦ

XΦ

√
X2

Φ −X2
0

⋅ 1

(M2 + xtX2
Φ +X2

Φ (X2
Φ +X2

0 ))
1/2

≡ f(M,X0), (F.2)

which holds at all temperatures. In particular, just below the kink temperature, X0 is small

but non-zero, and (abbreviating Mk = Mkink and xt,k = xt,kink)

�

2
= f(Mk, 0) +

∂f

∂X0

(Mk, 0)X0 +O(X2
0 ) (F.3)

at that point. If we make the substitution XΦ = X0y, we see that f(Mk, 0) is actually
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non-singular:

f(Mk, 0) = Mk

∫ ∞
1

dy

y
√
y2 − 1

⋅ 1

(M2
k + xt,ky2X2

0 + y2 (y2 + 1)X4
0 )

1/2

∣∣∣∣∣
X0=0

=

∫ ∞
1

dy

y
√
y2 − 1

=
�

2
. (F.4)

This means that (∂f/∂X0)(Mk, 0) must vanish due to Eqn. (F.3). The derivative is taken

most easily from the expression in (F.4), giving

∂f

∂X0

(Mk, 0) = −MkX0

∫ ∞
1

y dy√
y2 − 1

⋅ xt,k + 2y2X2
0 + 2X2

0

(M2
k + xt,ky2X2

0 + y2 (y2 + 1)X4
0 )

3/2

∣∣∣∣∣
X0=0

. (F.5)

Despite its appearance, this does not trivially vanish when X0 → 0. Instead, restore the

original variable XΦ = X0y to find

∂f

∂Φ0

(Mk, 0) = −Mk

∫ ∞
X0

XΦ dXΦ√
X2

Φ −X2
0

⋅ xt,k + 2X2
Φ + 2X2

0

(M2
k + xt,kX2

Φ +X2
Φ (X2

Φ +X2
0 ))

3/2

∣∣∣∣∣
X0=0

(F.6)

which suffers no singularity when X0 is replaced by zero. Thus the second condition on xt,k

and Mk is

0 =

∫ ∞
0

dXΦ
xt,k + 2X2

Φ

(M2
k + xt,kX2

Φ +X4
Φ)

3/2
. (F.7)

Eqns. (F.1) and (F.7) may be recast, with the aid of Eqns. (D.15) and (D.18), into

√
Mk = 2K

(√
1

2
− xt,k

4Mk

)
(F.8)

and

1

2
Mk

√
xt,k + 2Mk =

4MkK

(√
xt,k − 2Mk

xt,k + 2Mk

)
− (xt,k + 2Mk)E

(√
xt,k − 2Mk

xt,k + 2Mk

)
, (F.9)

which are easily solved numerically to give

xt,kink ≈ −28.1099 and Mkink ≈ 21.5491. (F.10)

In Eqn. (F.9), E(x) is the complete elliptic integral of the second kind.
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It is worth noting that the kink develops at the same temperature as where the mean-field

Ising model’s scaling function X
(+,−)
Cas achieves its maximum. Indeed, we can independently

arrive at the temperature in Eqn. (F.10) by considering Eqn. (D.22). We are squarely in

the region xt < 0, so the relationships are

X
(+,−)
Cas = 64k2(1− k2)K(k)4 and xt = −8(2k2 − 1)K(k)2 (F.11)

and the slope of the scaling function is given by

dX
(+,−)
Cas

dxt
=
dX

(+,−)
Cas /dk

dxt/dk
. (F.12)

Setting this expression to zero and solving for k in the region [ 1√
2
, 1) yields k ≈ 0.909.

Plugging that value in to Eqn. (F.11), we find xt,max ≈ −28.1099.
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APPENDIX G

Some Integrals of Interest

We are interested in finding a closed form for the integral

I(s) =

∫ �

−�
dx dy ln (s− 2 cosx− 2 cos y) , (G.1)

appearing in Eqn. (3.47). We proceed by looking at its derivative,

dI

ds
=

∫ �

−�

dx dy

s− 2 cosx− 2 cos y
, (G.2)

which also appears in Eqn. (3.45). We note that it resembles the following complex analysis

exercise:

J(a, b) =

∫ �

−�

dx

a+ b cosx
, (G.3)

where a, b ∈ ℝ and a > ∣b∣. Therefore, we will attempt the calculation of J(a, b), first writing

z = eix so that

J(a, b) =

∫ �

−�

dx

a+ b
2

(eix + e−ix)
=

2

ib

∫
dz

z2 + 2a
b
z + 1

(G.4)

and the integration proceeds on the unit circle in the complex plane, oriented counter-

clockwise.

The integrand has poles at

z± =
−a±

√
a2 − b2

b
, (G.5)

and the root z− is outside the unit disk, because

∣z−∣ =
a+
√
a2 − b2

∣b∣
>

a

∣b∣
> 1. (G.6)

On the other hand, z+ is inside:

∣z+∣ =
∣∣∣∣−a+

√
a2 − b2

b
⋅ −a−

√
a2 − b2

−a−
√
a2 − b2

∣∣∣∣ =

∣∣∣∣ b

a+
√
a2 − b2

∣∣∣∣ < ∣b∣a < 1. (G.7)
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Therefore the residue theorem gives

J(a, b) =
2

ib
⋅ 2�i ⋅ Res

(
1

(z − z−)(z − z+)
, z = z+

)
=

2�√
a2 − b2

. (G.8)

Returning to our original problem, we see that

dI

ds
=

∫ �

−�
dx

dy

(s− 2 cosx)− 2 cos y
=

∫ �

−�
dx J(s− 2 cosx,−2)

=

∫ �

−�
dx

2�√
(s− 2 cosx)2 − 4

. (G.9)

Integrating instead over [0, �] (thus gaining a factor of two), and making the change of

variables

tan
(x

2

)
=

√
s

s+ 4
tanu, (G.10)

with dx = 2
√
s(s+ 4) sec2 u du

4+s⋅sec2 u
and cosx = 4+s(1−tan2 u)

4+s⋅sec2 u
, we proceed carefully and end up

with ∫ �

−�

dx dy

s− 2 cosx− 2 cos y
=
dI

ds
=

8�

s

∫ �/2

0

du√
1− 16

s2
cos2 u

=
8�

s
K

(
4

s

)
. (G.11)

Now we refer to a table of integrals1 in order to find an anti-derivative of dI/ds,

I(s) =

∫
ds

8�

s
K

(
4

s

)
= const + 4�2 ln s+ 2�2

(
2 + 1 + i�

)
− 8�2

s2
⋅ 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;

16

s2

)
. (G.12)

We determine the constant by considering s = 4, which gives[80]

I(s = 4) = 16�G− 4�2 ln 2 (G.13)

from Eqn. (G.1), with G being Catalan’s constant. On the other hand,

8�2

s2
⋅ 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;

16

s2

)∣∣∣∣
s=4

= −16�G+ 8�2 ln 2. (G.14)

Thus, we find

const = −2�2
(
2 + 1 + i�

)
, (G.15)

1http://functions.wolfram.com/08.02.21.0007.01, with z = 16/s2.
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with the final result

I(s) = 4�2

[
ln s− 2

s2
⋅ 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;

16

s2

)]
. (G.16)

88



APPENDIX H

Spectral Derivatives

Consider a real, symmetric L× L matrix ℋ with a non-degenerate spectrum, whose entries

depend on a parameter x. Let the eigenvalues and normalized eigenvectors be denoted {al}

and {∣ (l)⟩}, respectively, with l = 1, . . . , L. We would like to compute derivatives of the

eigenvalues and normalized eigenvectors with respect to the parameter x. First note that

the condition ⟨ (l)∣ (l)⟩ = 1 gives

0 =
∂

∂x
⟨ (l)∣ (l)⟩ =

∂⟨ (l)∣
∂x

∣ (l)⟩+ ⟨ (l)∣∂∣ 
(l)⟩

∂x
. (H.1)

By virtue of ℋ being real and symmetric, its eigenvalues are real[] as are its eigenvectors.

Therefore the above condition leads us to conclude the orthogonality of ∣ (l)⟩ and its deriva-

tive with respect to x:

⟨ (l)∣∂∣ 
(l)⟩

∂x
= 0. (H.2)

Now we refer to the defining property of the eigenvalues,

ℋ∣ (l)⟩ = al∣ (l)⟩, (H.3)

and differentiate it to find

∂ℋ
∂x
∣ (l)⟩+ℋ∂∣ 

(l)⟩
∂x

=
∂al
∂x
∣ (l)⟩+ al

∂∣ (l)⟩
∂x

. (H.4)

Rearranging,

(ℋ− al)
∂∣ (l)⟩
∂x

=
∂al
∂x
∣ (l)⟩ − ∂ℋ

∂x
∣ (l)⟩. (H.5)

At this point, we appeal to inner products. Multiplying on the left by ⟨ (l)∣ and making

use of Eqn. (H.2) and the fact that ⟨ (l)∣ℋ = ⟨ (l)∣al because ℋ is real and symmetric (i.e.
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Hermitian), we find1

∂al
∂x

= ⟨ (l)∣∂ℋ
∂x
∣ (l)⟩. (H.6)

On the other hand, if we apply ⟨ (m)∣ with m ∕= l, we find the following:

(am − al)⟨ (m)∣∂∣ 
(l)⟩

∂x
= −⟨ (m)∣∂ℋ

∂x
∣ (l)⟩. (H.7)

Of course, this is a statement about the component of ∂∣ (l)⟩/∂x along the vector ∣ (m)⟩.

Therefore, we can reconstruct the entire vector by summing over the components in each of

the eigenvectors’ directions (we already know from Eqn. (H.2) that there is no component

along ∣ (l)⟩ itself)
∂∣ (l)⟩
∂x

=
∑
m ∕=l

⟨ (m)∣∂ℋ
∂x
∣ (l)⟩

al − am
∣ (m)⟩. (H.8)

In the particular case of the matrix ℋ from Eqn. (3.18), we see that[
∂ℋ
∂Λl

]
ij

= 2�il�jl. (H.9)

Therefore,
∂al
∂Λj

=
∑
m,n

 (l)
m

[
∂ℋ
∂Λj

]
mn

 (l)
n = 2

∑
m,n

 (l)
m �mj�nj 

(l)
n = 2  

(l)
j

2
(H.10)

and
∂ 

(l)
i

∂Λj

=
∑
m∕=l

2 
(m)
j  

(l)
j

al − am
 

(m)
i . (H.11)

1Also note that non-degenerate Hermiticity implies orthogonality of eigenvectors: am⟨ (m)∣ (l)⟩ =
⟨ (m)∣ℋ∣ (l)⟩ = al⟨ (m)∣ (l)⟩, by acting alternately on the left or the right with ℋ, forces ⟨ (m)∣ (l)⟩ = �lm.
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APPENDIX I

Asymptotic Solution of the O(n) Model with n→∞

In this Appendix, we resume the study of the model defined in section 3.2.

I.1 Setting Up the Asymptotic Approach

The problem may be studied at low temperature (equivalently, large values of R = �J) more

or less analytically. Recalling Eqn. (3.46), we see that when R is very large, the saving grace

is the one eigenvalue, a1, which approaches 4. This effectively renders the constraint as

R ≈ 2

�
 

(1)
i

2 1

a1

K

(
4

a1

)
. (I.1)

This holds for each i = 1, . . . , L, which implies that  
(1)
i

2
≈ const. Furthermore, the

numerics indicate that, as R gets large,  (1) approaches a constant vector (as opposed to one

varying with respect to i). This can also be argued in analogy to quantum mechanics where

the lowest eigenstate generally features the least spatial variation. In any case, if we require

that the constant vector be an eigenvector of ℋ with an eigenvalue of 4, we find that

Λ∗ = (5, 6, 6, . . . , 6, 6, 5)/2 (I.2)

is the one and only solution for the {Λl}. Indeed, the numerics show that Λ → Λ∗ as the

temperature decreases.

The spectrum of the resulting matrix ℋ0 ≡ ℋ(Λ∗), defined by Eqn. (3.18), may be

computed in closed form by trying an ansatz �i = cos(ai + b) as an eigenvector. Using

trigonometric identities, we find that the associated eigenvalue is 4 + 4 sin2
(
a
2

)
and then use

91



that to determine1 a and b, yielding the eigenvalues

�l = 4 + 4 sin2

(
�(l − 1)

2L

)
, l = 1, . . . , L (I.3)

with corresponding eigenvectors

�
(l)
i = cos

(
�(l − 1)

2L
(2i− 1)

)
/norm, i, l = 1, . . . , L (I.4)

where the norm may be shown to be
√
L for l = 1 and

√
L/2 for all other l.

Now we will perturb the Lagrange multlipliers, Λl = Λ∗l + �l/2, and see the effect on the

eigensystem. The perturbed Hamiltonian that we are studying is then

ℋ = ℋ0 + ℰ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 + �1 −1 0

−1 6 + �2 −1

0 −1 6 + �3
. . .

6 + �L−1 −1

−1 5 + �L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (I.5)

where ℰ ≡ diag(�) is the small perturbative matrix. We recall from perturbation theory

that, to first order, the eigenvalues of ℋ are

al = �l + ⟨�(l)∣ℰ∣�(l)⟩ = �l +
L∑
i=1

�i �
(l)
i

2
, (I.6)

while the eigenvectors become

∣ (l)⟩ = ∣�(l)⟩+
∑
m ∕=l

⟨�(m)∣ℰ∣�(l)⟩
�l − �m

∣�(m)⟩. (I.7)

In terms of components, this last equation reads

 
(l)
i = �

(l)
i +

∑
m∕=l

1

�l − �m
�

(m)
i

L∑
j=1

�j�
(m)
j �

(l)
j . (I.8)

1The identity tan x
2 = 1−cos x

sin x is especially useful here.
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Our goal is to find the values {�l} which solve the constraint equations when R is very large.

The constraint is particularly sensitive to variations in the first mode, {a1, ∣ (1)⟩} so we

rewrite Eqn. (3.46) as

R =
2

�
 

(1)
i

2 1

4
K

(
4

a1

)
+

2

�

L∑
l=2

�
(l)
i

2 1

�l
K

(
4

�l

)
, (I.9)

where it will be noted that the terms involving modes l ≥ 2 refer to the unperturbed

states and eigenvalues. Numerics will later confirm that this simplifying approximation is

acceptable.

The perturbations to the first mode are especially simple:

a1 = �1 +
L∑
i=1

�i �
(1)
i

2
= 4 +

1

L

L∑
i=1

�i, (I.10)

because �1 = 4 and �
(1)
i = 1√

L
for all i. The perturbed eigenvector is

 
(1)
i =

1√
L

+
1√
L

L∑
m=2

1

4− �m
�

(m)
i

L∑
j=1

�j�
(m)
j . (I.11)

and its square, neglecting terms O(�2), is

 
(1)
i

2
≈ 1

L
+

2

L

L∑
m=2

1

4− �m
�

(m)
i

L∑
j=1

�j�
(m)
j . (I.12)

Now we define

Ci =
2

�

L∑
l=2

�
(l)
i

2 1

�l
K

(
4

�l

)
, (I.13)

which is an easily computed function of only L, and the constraint equation reads

R =
2

�

(
1

L
+

2

L

L∑
m=2

1

4− �m
�

(m)
i

L∑
j=1

�j�
(m)
j

)
1

4
K

(
4

a1

)
+ Ci (I.14)

We recall two useful properties of the eigenvectors {∣�(l)⟩},

orthonormality: ⟨�(l)∣�(m)⟩ =
∑L

i=1 �
(l)
i �

(m)
i = �lm (I.15)

completeness:
[∑L

l=1 ∣�(l)⟩⟨�(l)∣
]
ij

=
∑L

l=1 �
(l)
i �

(l)
j = �ij. (I.16)
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Multiplying Eqn. (I.14) by �
(1)
i and then summing over i kills the complicated term via

orthogonality. After moving around constants, we find

2�LR = K

(
4

a1

)
+ 2�

L∑
i=1

Ci, (I.17)

which can be immediately solved for a1 ≈ 4 by expanding the elliptic K function. This gives

a1 ≈ 4
(

1 + 8e−4�L(R− 1
L

∑L
i=1 Ci)

)
∼ 4 + 32e−4�LR. (I.18)

Thus the exponential decay of a1 with R, postulated in section 3.5, is recovered. Note that

the quantity �L = 1
L

∑
iCi tends to a finite, non-zero limit as L→∞:

�L =
1

L

L∑
i=1

Ci =
1

2�L

L∑
l=2

1

1 + sin2
(
�(l−1)

2L

)K
⎛⎝ 1

1 + sin2
(
�(l−1)

2L

)
⎞⎠

→ 1

2�

∫ 1

0

dx

1 + sin2
(
�x
2

)K ( 1

1 + sin2
(
�x
2

)) ≈ 0.25273. (I.19)

In fact, �L → Rc: taking the definition of Rc from Eqn. (3.38), and performing two of the

integrations according to Eqn. (G.11), we see that

Rc =
1

2�

∫ 1

0

dx

1 + sin2
(
�x
2

)K ( 1

1 + sin2
(
�x
2

)) . (I.20)

Returning to the constraint, Eqn. (I.14), we now take an inner product with ∣�(l)⟩ where

l > 1. That is, multiply by �
(l)
i and sum over i. This gives

L∑
j=1

�j�
(l)
j = 2�L

�l − 4

2K(4/a1)

L∑
i=1

Ci�
(l)
i . (I.21)

Now multiply by �
(l)
k and sum over l, using completeness:

�k =
1

�(R− �L)

L∑
l=1

L∑
i=1

L∑
m=2

�l − 4

�m
K

(
4

�m

)
�

(l)
k �

(l)
i �

(m)
i

2
. (I.22)

This can be further simplified by computing

L∑
i=1

�
(l)
i �

(m)
i

2
=

1

NlN2
m

L∑
i=1

cos

(
�(l − 1)

2L
(2i− 1)

)
cos2

(
�(m− 1)

2L
(2i− 1)

)
, (I.23)
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where Ni denotes the norm of ∣�(i)⟩. The result is

L∑
i=1

�
(l)
i �

(m)
i

2
=

L

4NlN2
m

(2�l1 + �l+2m−3,0 − �l+2m−3,2L + �l−2m+1,0) . (I.24)

Therefore,

�k =

√
2/L

2�(R− �L)

⌊(L+1)/2⌋∑
m=2

(�2m−1 − 4)�
(2m−1)
k

[
K(4/�m)

�m
− K(4/�L+2−m)

�L+2−m

]
. (I.25)

Referring to Eqn. (I.6) and reusing the result Eqn. (I.24), being mindful that 2m − 1 may

be larger than L, we find a milestone result: the perturbed eigenvalues, for l ≥ 2, are

al = �l +
1

2�L(R− �L)
(�2l−1 − 4)

[
K(4/�l)

�l
− K(4/�L+2−l)

�L+2−l

]
, (I.26)

where �l is as written in Eqn. (I.3) even when l ∈ ℤ is not confined to the range {1, . . . , L}.

It is worth pointing out that, for l ≥ 2, the perturbations to the eigenvalues go as 1/R,

whereas the anomalous a1 is perturbed by e−R.

For a given L and large R, these eigenvalues may be compared to the data found numer-

ically. The agreement is excellent, even when R is only moderately large. For instance, with

L = 6 and R = 10,

al (numeric) 4.00000 4.26893 5.00123 6.00001 6.99878 7.73107

�l (unperturbed) 4.00000 4.26795 5.00000 6.00000 7.00000 7.73205

al (perturbed) 4.00000 4.26893 5.00123 6.00000 6.99877 7.73107

(I.27)

where the numeric results come from the implementation of the procedures discussed in

section 3.5.

I.2 Casimir Force Considerations

Our ultimate goal is to find a closed form expression for the Casimir force in the asymptotic

regime R→∞. Towards that end, we must consider the finite-size free energy, Eqn. (3.47).

The clear difficulty in the expression for the free energy is the term

B(L,R) =
1

8�2

∫ �

−�
dqx dqy

L∑
l=1

ln(al − 2 cos qx − 2 cos qy). (I.28)
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It is natural to ask what dominates the perturbative behavior of B(L,R): the almost-singular

mode l = 1 or the other modes which are perturbed by 1
R

? If we define ��l = al − �l, then

we can simply Taylor expand for l > 1,∫ �

−�
dqx dqy ln(al − 2 cos qx − 2 cos qy)

≈
∫ �

−�
dqx dqy ln(�l − 2 cos qx − 2 cos qy) + ��l

∫ �

−�

dqx dqy
�l − 2 cos qx − 2 cos qy

. (I.29)

Therefore the l > 1 perturbations make contributions to B(L,R) on the order of ��l ∼ 1
R

.

On the other hand, the l = 1 term cannot be developed in a simple Taylor series. Instead,

we have the expansion[37, 80]∫ �

−�
dqx dqy ln(4 + ��1 − 2 cos qx − 2 cos qy)

=
2G

�
+

1

256�
��1

(
32 (1 + 5 ln 2)− 32 ln ��1

)
+O

(
��1

2
)
, (I.30)

where G is Catalan’s constant. The perturbative contribution for l = 1 is on the order of

Re−R which is dwarfed by the 1/R contributions for l > 1.

According to Eqn. (I.26), and setting u = sin2
(
�(l−1)

2L

)
,

��l =
1

2�L(R− �L)
4u(1− u)

[
1

1 + u
K

(
1

1 + u

)
− 1

2− u
K

(
1

2− u

)]
. (I.31)

for l = 2, . . . , L. For l = 1, the above equation predicts zero, while the true perturbation

is ��1 ∼ e−R. In light of the comments above, we can take Eqn. (I.31) as correct for all

l = 1, . . . , L without erring in the perturbative analysis.

In that case, we may expand B(L,R) as a series in ��l ∼ 1/R,

B(L,R) =
1

8�2

∫ �

−�
dqx dqy

L∑
l=1

ln(�l − 2 cos qx − 2 cos qy)

+
1

8�2

∫ �

−�
dqx dqy

L∑
l=1

��l
�l − 2 cos qx − 2 cos qy

+O
(
��l

2
)
, (I.32)
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whose first and second terms we will call B0 and B1, respectively. The Casimir force is

�FCas(L)

A
= �fbulk

− 1

2

[
ln

(
R

2�

)
+B(L+ 1)−B(L− 1)− 1

2
R

(∑
l

+
al −

∑
l

−
al

)]
, (I.33)

where
∑± refers to a sum over the system with size L±1. We can evaluate each of the

∑
al

by considering the trace of our matrix ℋ. We see that

∑
l

al = trℋ = 2
∑
l

Λ∗l +
∑
l

�l = 6L− 2 +
∑
l

�l, (I.34)

and our previous analysis showed that, to first order in perturbation theory,
∑

l �l ≈ 0. More

precisely,
∑

l �l = O(1/R2). Because these terms are multiplied by R, we will find that they

give rise to a non-zero contribution of order 1/R. This computation will be performed in

detail later.

The Casimir force will further simplify when we insert the expression for �fbulk in the

next section. For now, we may write it as

�FCas(L)

A
= �fbulk −

1

2
ln

(
R

2�

)
− 1

2

(
B(L+ 1)−B(L− 1)

)
+

1

4
R

(
12 +

∑
l

+
�l −

∑
l

−
�l

)
. (I.35)

I.3 Zero-Temperature Casimir Force

We will now consider the first term of B(L,R), which we call B0. This is the temperature-

independent zero-order term in the 1/R expansion. Define

SL(x) =
L∑
l=1

ln(�l + x), (I.36)

so that

B0 =
1

8�2

∫ �

−�
dqx dqy SL

(
x = −2 cos qx − 2 cos qy

)
. (I.37)
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The �l are 2L-periodic. In light of that, it makes sense to consider a sum over the entire

period:

TL(x) =
2L∑
l=1

ln(�l + x), (I.38)

which is related to SL(x) through

SL(x) =
1

2

[
TL(x)− ln(8 + x) + ln(4 + x)

]
. (I.39)

The ln(8 + x) and ln(4 + x) are the l = L+ 1 and l = 2L+ 1 terms which TL “mistakenly”

includes and excludes, respectively. Let M be the (formally infinite) number of copies of

{1, . . . , 2L} needed to cover all of ℤ when lay end-to-end. Then we have

TL(x) =
1

M

∞∑
l=−∞

ln(�l + x). (I.40)

The derivative dTL/dx is more amenable to analysis:

dTL
dx

=
1

M

∞∑
l=−∞

1

�l + x
= − 1

M

∑
Res

(
� cot(�z)

�(z) + x

)
, (I.41)

where we invoke the cotangent summation formula, and the sum runs over the residues of

1/(�(z) + x). �(z) is the analytic continuation of our eigenvalues which were previously

indexed by integer l. Specifically,

�(z) = 4 + 4 sin2

(
�(z − 1)

2L

)
. (I.42)

The function �(z) is 2L-periodic, so we can restrict our attention to 0 < Re(z) ≤ 2L, a

vertical strip in the complex plane, with the understanding that any residues found there

will be duplicated M times. Therefore we will have

dTL
dx

= −
∑

Res

(
� cot(�z)

�(z) + x

)
, (I.43)

where we now only include the residues in the vertical strip described above. The locations

of the residues are determined by the equation �(z) = −x. We note that −4 ≤ x ≤ 4

because x = −2 cos qx − 2 cos qy, so we expect the solutions to be complex. Indeed, they are

z± = 1± i 2L

�
sinh−1

√
x+ 4

4
, (I.44)
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and the residues there are

Res

(
� cot(�z)

�(z) + x
; z = z±

)
= − L√

4 + x
√

8 + x
coth

[
2L sinh−1

√
x+ 4

4

]
(I.45)

so that
dTL
dx

=
2L√

4 + x
√

8 + x
coth

[
2L sinh−1

√
x+ 4

4

]
. (I.46)

This is immediately integrated2 with respect to x, giving

TL(x) = 2 ln

[
sinh

(
2L sinh−1

√
x+ 4

4

)]
+ const. (I.47)

We can determine the constant by considering TL(x→∞). From the definition, Eqn. (I.38),

a large value of x washes out the l dependence. Therefore, we have TL(x → ∞) ∼ 2L lnx.

For large argument, sinh−1 � looks like ln(2�), while sinh� looks like 1
2
e�. Then

2 ln

[
sinh

(
2L sinh−1

√
x+ 4

4

)]
+ const ∼ 2L lnx− 2 ln 2 + const (I.48)

must agree with 2L lnx, which determines our constant as 2 ln 2. The closed form result for

SL(x) is

SL(x) = ln

[
2 sinh

(
2L sinh−1

√
x+ 4

4

)]
+

1

2
ln

(
4 + x

8 + x

)
, (I.49)

which remains to be integrated on qx and qy to find B0. In the interest of computing the

Casimir force, we now construct the combination 1
2
(B0(L+ 1)−B0(L− 1)), finding

1

2

(
B0(L+ 1)−B0(L− 1)

)
=

1

8�2

∫ �

−�
dqx dqy

1

2
ln

(
sinh 2(L+ 1)v

sinh 2(L− 1)v

)
, (I.50)

where v = sinh−1
√

4−2 cos qx−2 cos qy
4

.

The bulk free energy density has a term

B0,bulk =
1

16�3

∫ �

−�
dqx dqy dqz ln (3− cos qx − cos qy − cos qz) , (I.51)

2It is not an accident that this is easy to integrate. The residues are � cot(�z±)/�′(z±) while �(z±) = −x
forces �′(z±)dz±dx = −1. Therefore dTL =

∑
± � cot(�z±)dz±dx dx.
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which we would like to bring into a form similar to that just computed for B0. Doing the qz

integration gives us

B0,bulk =
1

8�2

∫ �

−�
dqx dqy

(
cosh−1 (3− cos qx − cos qy)− ln 2

)
, (I.52)

which is equivalent to

B0,bulk = −1

2
ln 2 +

1

8�2

∫ �

−�
dqx dqy 2v, (I.53)

by a hyperbolic double angle formula, with v as defined above.

Therefore the temperature-independent part of the Casimir force, i.e. the zeroth order

in 1/R, is given by (see Eqns. (3.40) and (I.35))

�FCas(L)

A
=

(
−3R +

1

2
ln

(
R

�

)
− 1

2
ln 2− 1

2
ln

(
R

2�

)
+ 3R

)
+

1

8�2

∫ �

−�
dqx dqy

[
2v − 1

2
ln

(
sinh (2(L+ 1)v)

sinh (2(L− 1)v)

)]
+O(1/R). (I.54)

The cancellation of the terms outside the integral is perfect, which leaves us with

�FCas(L)

A
=

1

8�2

∫ �

−�
dqx dqy

[
2v − 1

2
ln

(
sinh (2(L+ 1)v)

sinh (2(L− 1)v)

)]
+O(1/R), (I.55)

In fact,
1

2
ln

(
sinh (2(L+ 1)v)

sinh (2(L− 1)v)

)
= 2v +

1

2
ln

(
1− e−4(L+1)v

1− e−4(L−1)v

)
, (I.56)

so the bulk contribution cancels in a very elegant way and we therefore have

�FCas(L)

A
= − 1

16�2

∫ �

−�
dqx dqy ln

(
1− e−4(L+1)v

1− e−4(L−1)v

)
+O(1/R). (I.57)

This is an exact expression for the value of the Casimir force at zero temperature, which

serves as an asymptote for the scaling function. Previous results[12, 85] indicate that, for

L → ∞, this value should be −�(3)/8�L3 due to the presence of Goldstone modes in the

three-dimensional bulk (the L→∞ limit).

We can give a more precise result by Taylor expanding Eqn. (I.57) about L = ∞. If

we let qx = rx/L and qy = ry/L, expand the integrand in powers of 1/L and utilize polar
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coordinates r2
x + r2

y = r2, the leading order is

�FCas(L)

A

∣∣∣∣
L,R→∞

≈ − 1

8�L2

∫ ∞
0

r dr ln

(
1− e−2(1+ 1

L
)r

1− e−2(1− 1
L

)r

)

≈ − 1

8�L3
4

∫ ∞
0

dr
r2

e2r − 1
= − �(3)

8�L3
. (I.58)

We find the next two corrections in similar fashion, and report the result

�FCas(L)

A
≈ − �(3)

8�L3
−

2�(3) + 7
8
�(5)

8�L5
−

3�(3) + 35
8
�(5) + 681

512
�(7)

8�L7
+O

(
1

R

)
. (I.59)

These corrections to the expected −�(3)/8�L3 result signify the fact that our finite-L model

does not have spontaneous symmetry breaking in its two-dimensional layers, although the

finite-size system approximates the three-dimensional bulk which does feature spontaneous

magnetization.

I.4 T > 0 Correction to Casimir Force

Now we consider the first order temperature dependence of the Casimir force. The first

quantity of interest is therefore

B1 =
1

8�2

∫ �

−�
dqx dqy

L∑
l=1

��l
�l − 2 cos qx − 2 cos qy

, (I.60)

which will enter the Casimir force, by Eqn. (I.35), as a term

−1

2

(
B1(L+ 1)−B1(L− 1)

)
(I.61)

being added on to the result, Eqn. (I.59). The second quantity of interest is the sum of the

eigenvalues, which enters the Casimir force as

+
1

4
R

(∑
l

+
�l −

∑
l

−
�l

)
, (I.62)

with notation as defined in Eqn. (I.35). This term requires going to second order in pertur-

bation theory but will yield a simple result nonetheless.
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I.4.1 The Quantity B1

We will now do some manipulation of B1, which is defined by Eqns. (I.60) and (I.31).

Because ��1 ≈ 0, we can sum over l = 2, . . . , L, omitting l = 1. The integral over q is easily

done by Eqn. (G.11), and we bring it into the form

B1 =
1

(R− �L)
⋅ 1

L

L−1∑
m=1

f
(m
L

)
, (I.63)

where

f(x) =
1

8�2
sin2(�x)

1

1 + sin2(�x/2)
K

(
1

1 + sin2(�x/2)

)
×
[

1

1 + sin2(�x/2)
K

(
1

1 + sin2(�x/2)

)
− 1

1 + cos2(�x/2)
K

(
1

1 + cos2(�x/2)

)]
. (I.64)

In this form, B1 may be evaluated numerically with great ease. It is desirable to analytically

extract the leading L dependence, though. We may find an expansion for B1 about L =∞ by

using a generalized form of the Euler-Maclaurin summation formula, valid when the function

of interest has logarithmic singularities at its endpoints, as our f does[86, 87].

We develop series expansions for f(x) about x = 0 and x = 1, finding

f(x) = x2
(
a2 (lnx)2 + b2 lnx+ c2

)
+ x4

(
a4 (lnx)2 + b4 lnx+ c4

)
+O(x6), (I.65)

and

f(1− �) = �2 (a′2 ln � + b′2) + �4 (a′4 ln � + b′4) +O(�6), (I.66)

with the various a and b easily determined but not of sufficient import to record here. The

Euler-Maclaurin formula tells us that

1

L

L−1∑
m=1

f
(m
L

)
=

∫ 1

0

dx f(x) +
1

L3

(
a2�
′′(−2) + (2a2 lnL− a′2 − b2) � ′(−2)

)
+

1

L5

(
a4�
′′(−4) + (2a4 lnL− a′4 − b4) � ′(−4)

)
+O

(
1

L7

)
, (I.67)
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where �(s) is the Riemann �-function, as usual. Inserting all of the coefficients, we have

B1 =
1

R− �L

(
B1,0 +B1,3 +B1,5 +O

(
1

L7

))
(I.68)

with

B1,0 =

∫ 1

0

dx f(x) ≈ 0.001794818, (I.69)

B1,3 =
1

8L3

(
� ′′(−2) +

(
2 lnL−K

(
1

2

)
+ 7 ln 2− 2 ln(2�)

)
� ′(−2)

)
, (I.70)

and

B1,5 =
�2

192L5

(
− 14� ′′(−4)

+

(
5− 4E

(
1

2

)
+ 11K

(
1

2

)
− 98 ln 2 + 28 ln(2�)− 28 lnL

)
� ′(−4)

)
. (I.71)

Furthermore, we can compute

B1(L+ 1)−B1(L− 1) (I.72)

which appears in the Casimir force. Using the Euler-Maclaurin formula, we first expand the

quantity �L, appearing in the denominator of B1, in powers of 1/L. The result is that

�L = Rc −
1

4�L

(
K(1/2) + 7 ln 2

2
+ lnL

)
+O

(
1

L2

)
. (I.73)

Then, if we are only interested in terms of order 1/(R−Rc), we find

1

R− �L
=

1

R−Rc

+O

(
1

(R−Rc)2

)
, (I.74)

and thus

B1(L+ 1)−B1(L− 1)

≈ 1

R−Rc

[
1

L4
(0.02246 + 0.04567 lnL) +

1

L6
(0.01973 + 0.2672 lnL)

]
, (I.75)

where we have made numerical approximations to the zoo of constants listed above.
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I.4.2 Sum of Eigenvalues to Second Order

We now take up the problem of computing

∑
l

�l, (I.76)

where �l are the diagonal elements of the perturbation matrix ℰ , cf. Eqn. (I.5), which solve

the spherical constraint. To first order in perturbation theory, we find the result, Eqn. (I.10),

that the perturbations, despite being non-zero, conspire to cancel out:

∑
l

�l ∼ e−R ≈ 0. (I.77)

However, we must also consider the second order corrections to the eigenvalues, because the

term entering the Casimir force has R multiplying the sum.

We revisit the spherical constraint,

R =
2

�
 

(1)
i

2 1

4
K

(
4

a1

)
+ Ci, (I.78)

still only being concerned with the perturbations of the almost-singular first mode. We will

now develop expressions to O(�2) for the corrections to the unperturbed �1 and �(1). These

are (ignoring terms ∝ e−R)

a1 = 4 +
1

L

L∑
m=2

1

4− �m

L∑
i,j=1

�i�j�
(m)
i �

(m)
j +O(�3), (I.79)

and
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i

2
=
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2
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j
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− 1
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1
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L∑
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�j�l�
(k)
j �

(k)
l

]
+O(�3). (I.80)
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The constraint is now very cumbersome to write, but the analysis proceeds as it did

before. Take the inner product of the constraint with ∣�(l)⟩, l > 1, to find

L∑
i=1

Ci�
(l)
i = (R− �L)

[
2

�l − 4

L∑
j=1

�j�
(l)
j −

2

�l − 4
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1

�m − 4
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�j�k�
(m)
j �

(l)
k �

(m)
k

−
L∑

k,m=2

1

(�m − 4)(�k − 4)
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�
(l)
i �

(m)
i �

(k)
i

L∑
j,n=1

�j�n�
(k)
j �(m)

n

]
. (I.81)

We now Taylor expand our � about the old solutions, Eqn. (I.22). Therefore, put

�r =
1

2(R− �L)

L∑
i,l=1

Ci�
(l)
i �

(l)
r (�l − 4) + �r, (I.82)

where �r is O(1/R2). Then, inserting this expansion into Eqn. (I.81) and keeping only terms

of O(1/R2), we find

�r =
1

4(R− �L)2

L∑
m=2

L∑
jklpq=1

(�k − 4)(�l − 4)

�m − 4
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q �
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n . (I.83)

As luck would have it, we don’t need �r but actually
∑

r �r. In that case, the second term

immediately gives zero (thank goodness) because

L∑
r=1

(�l − 4)�(l)
r = 0, (I.84)

by orthogonality, ⟨�(1)∣�(l)⟩ = 0 if l > 1, or by vanishing of (�l − 4) if l = 1. The first term

also greatly simplifies upon summing over r:

L∑
r=1

�r =
1

4(R− �L)2

L∑
m=2

L∑
jlpq=1

(�l − 4)CpCq�
(m)
j �(m)

p �(l)
q �

(l)
j . (I.85)

Performing the j sum gives

L∑
r=1

�r =
1

4(R− �L)2

L∑
m=2

L∑
p,q=1

(�m − 4)CpCq�
(m)
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q , (I.86)
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Referring to the explicit expressions, Eqns. (I.3) and (I.4), for the unperturbed eigenvalues

and eigenstates, the m sum gives

2�pq

(
1− 1

2
�q1 −

1

2
�qL

)
− �p,q+1 − �p,q−1, (I.87)

and therefore we find a simpler form

L∑
r=1

�r =
1

4(R− �L)2
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−C2

1 − C2
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q=1

C2
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CqCq+1

)
. (I.88)

Noting the fact that the final two summations are identical and that C2
1 = C2

L, by the

definition of the Ci in Eqn. (I.13), we have further

L∑
r=1

�r =
1

4(R− �L)2
2
L−1∑
q=1

Cq(Cq − Cq+1). (I.89)

Inserting the definition of Cq and making use of the trigonometric identity

L−1∑
q=1
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we have
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, (I.91)

which bears more than a passing resemblance to Eqn. (I.63) for B1! In fact, we have

L∑
l=1

�l =
L∑
l=1

�l =
1

4
⋅ 4B1(L)

R− �L
=

B1(L)

R− �L
. (I.92)

I.4.3 Putting Together the T > 0 Correction

At this point, we can combine the two terms. The term in the Casimir force of order 1/R is

−1

2

(
B1(L+ 1)−B1(L− 1)

)
+

1

4
R

(
B1(L+ 1)

R− �L+1

− B1(L− 1)

R− �L−1

)
(I.93)
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If we are to keep strictly to order 1/R, we see that

R

R− �L
= 1 +O(1/R), (I.94)

so the combination simplifies even further to

−1

4

(
B1(L+ 1)−B1(L− 1)

)
+O

(
1

R2

)
. (I.95)

This is a quantity we fully understand, having already studied it and produced a series

expansion, Eqn. (I.75).
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